P(x,y)在第四象限內(nèi),且|x|=10,|y|=6,則點(diǎn)P關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為_(kāi)_______.

 

答案:
解析:

(-10,-6)

 


提示:

利用平面直角坐標(biāo)系的性質(zhì)

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線(xiàn)y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)當(dāng)該拋物線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)(1)中的拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為Q,拋物線(xiàn)的頂點(diǎn)為P,試求經(jīng)過(guò)O、P、Q三點(diǎn)的圓的圓心O′的坐標(biāo);
(3)設(shè)A是(1)所確定的拋物線(xiàn)上位于x軸下方、且在對(duì)稱(chēng)軸左側(cè)的一個(gè)動(dòng)點(diǎn),過(guò)A作x軸的平行線(xiàn),交拋物線(xiàn)于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C,
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問(wèn)矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,一次函數(shù)y=ax+b的圖象經(jīng)過(guò)A、B兩點(diǎn),當(dāng)滿(mǎn)足直線(xiàn)y=ax+b在第四象限時(shí),自變量x的取值范圍是
0<x<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•梧州一模)如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=x+1與y=-
3
4
x+3交于點(diǎn)A,分別交x軸于點(diǎn)B和點(diǎn)C,點(diǎn)D是直線(xiàn)AC上且位于y軸右側(cè)的一個(gè)動(dòng)點(diǎn).
(1)點(diǎn)A,B,C的坐標(biāo)是A
8
7
,
15
7
8
7
,
15
7
,B
(-1,0)
(-1,0)
,C
(4,0)
(4,0)

(2)當(dāng)△CBD為等腰三角形時(shí),點(diǎn)D的坐標(biāo)是
3
2
,
15
8
)或(8,-3)
3
2
,
15
8
)或(8,-3)

(3)在(2)中,當(dāng)點(diǎn)D在第四象限時(shí),過(guò)點(diǎn)D的反比例函數(shù)解析式是
y=-
24
x
y=-
24
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A、C分別在y軸、x軸上,且∠ACB=90°,AC=BC.
(1)如圖1,當(dāng)A(0,-2),C(1,0),點(diǎn)B在第四象限時(shí),則點(diǎn)B的坐標(biāo)為
(3,-1),
(3,-1),
;
(2)如圖2,當(dāng)點(diǎn)C在x軸正半軸上運(yùn)動(dòng),點(diǎn)A在y軸正半軸上運(yùn)動(dòng),點(diǎn)B在第四象限時(shí),作BD⊥y軸于點(diǎn)D,試判斷
OC+BD
OA
OC-BD
OA
哪一個(gè)是定值,并說(shuō)明定值是多少?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,A的坐標(biāo)為(a,0),D的坐標(biāo)為(0,b),且a、b滿(mǎn)足
a+2
+(b-4)2=0

(1)求A、D兩點(diǎn)的坐標(biāo);
(2)以A為直角頂點(diǎn)作等腰直角三角形△ADB,直接寫(xiě)出B的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)B在第四象限時(shí),將△ADB沿直線(xiàn)BD翻折得到△A′DB,點(diǎn)P為線(xiàn)段BD上一動(dòng)點(diǎn)(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請(qǐng)?zhí)骄浚篜D、PN、BN之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案