當(dāng)x______時,
x-4
在實數(shù)范圍內(nèi)有意義,當(dāng)x______時,
2
2x-3
在實數(shù)范圍內(nèi)有意義.
①根據(jù)題意得:x-4≥0,解得:x≥4;
②根據(jù)題意得:2x-3≥0且
2x-3
≠0,解得:x
3
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C的解析式為:y=x2-2kx+(
3
+k)k,k為實數(shù).
(1)求拋物線的頂點坐標(biāo)和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應(yīng)的頂點坐標(biāo);試說明當(dāng)k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點分別為A、B(OA<OB),試問:
OA
OB
是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線C的解析式為:y=x2-2kx+(數(shù)學(xué)公式+k)k,k為實數(shù).
(1)求拋物線的頂點坐標(biāo)和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應(yīng)的頂點坐標(biāo);試說明當(dāng)k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點分別為A、B(OA<OB),試問:數(shù)學(xué)公式是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•長沙)設(shè)拋物線C的解析式為:y=x2-2kx+(+k)k,k為實數(shù).
(1)求拋物線的頂點坐標(biāo)和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應(yīng)的頂點坐標(biāo);試說明當(dāng)k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點分別為A、B(OA<OB),試問:是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年湖南省長沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•長沙)設(shè)拋物線C的解析式為:y=x2-2kx+(+k)k,k為實數(shù).
(1)求拋物線的頂點坐標(biāo)和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應(yīng)的頂點坐標(biāo);試說明當(dāng)k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點分別為A、B(OA<OB),試問:是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:競賽題 題型:填空題

在用flash畫一個正方形時,如圖,實折線是正方形的兩條鄰邊,虛折線是由實折線經(jīng)過平移得到的,當(dāng)虛折線按順時針方向旋轉(zhuǎn)(       )度,并經(jīng)過適當(dāng)平移后恰好與實折線組成正方形.

查看答案和解析>>

同步練習(xí)冊答案