如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動(dòng),移動(dòng)開始前點(diǎn)A與點(diǎn)F重合.在移動(dòng)過程中,邊AD始終與邊FG重合,連接CG,過點(diǎn)A作CG的平行線交線段GH于點(diǎn)P,連接PD.已知正方形ABCD的邊長為1cm,矩形EFGH的邊FG、GH的長分別為4cm、3cm.設(shè)正方形移動(dòng)時(shí)間為x(s),線段GP的長為y(cm),其中0≤X≤2.5

1.試求出y關(guān)于x的函數(shù)關(guān)系式,并求出y =3時(shí)相應(yīng)x的值;

2.記△DGP的面積為,△CDG的面積為,試說明是常數(shù);

3.當(dāng)線段PD所在直線與正方形ABCD的對(duì)角線AC垂直時(shí),求線段PD的長.

 

【答案】

 

1.    ;  x=2.5

2.見解析

3.

【解析】⑴利用三角函數(shù)求出y關(guān)于x的函數(shù)關(guān)系式,將y =3代入關(guān)系式,可得x的值

⑵分別求出它們的面積,可得結(jié)論

⑶延長PD交AC于點(diǎn)Q,利用正方形的性質(zhì)和等腰直角三角形,求得GD=GP,再利用三角函數(shù)求解

.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案