【題目】如圖,矩形OABC在平面直角坐標系中,若x2﹣2x+2=0的兩根是x1、x2,且OC=x1+x2,OA=x1x2
(1)求B點的坐標.
(2)把△ABC沿AC對折,點B落在點B′處,線段AB′與x軸交于點D,求直線BD的解析式.
(3)在平面上是否存在點P,使D、C、B、P四點形成的四邊形為平形四邊形?若存在,請直接寫出P點坐標;若不存在,請說明理由.
【答案】(1)B(2,2);(2)y= x-1;(3)存在,P1( ,2), P2( ,2) ,P3( ,-2).
【解析】
(1)根據(jù)一元二次方程的兩根關(guān)系求出x1+x2,x1x2,從而得到點B的坐標;
(2)根據(jù)矩形的性質(zhì),∠BAC=∠AOB=30°,然后根據(jù)全等三角形的判定得到△ABC≌△ABC,然后根據(jù)勾股定理求出OD的長,進而得到D點的坐標;
(3)根據(jù)平行四邊形的特點,對邊平行且相等,由平行四邊形的判定得到符合條件的點的坐標.
(1)x2-2x+2=0的兩根是x1、x2,
x1+x2=2,x1x2=2
∵OC= x1+x2 OA= x1x2
∴OC=2, OA=2
∴B(2,2)
(2)在矩形OABC中 BC=2 AB=2
∴∠BAC =30°=∠AOB
∴△ABC≌△AB’C
∴∠B’AC =30°得到
∴∠BAO=30°
∴AD=DC
∴AD=2-DO
AD2=OD2+OA2
OD=
D(,0)
設(shè)直線BD的解析式為y=kx+b(k≠0,k、b為常數(shù))
代入B(2,2) D(,0)得
k=,
b=-1,
∴直線BD的解析式為y=x-1
(3)存在,
P1(,2), P2(,2) P3(,-2)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(x,0),B(x,y),若線段AB上存在一點Q滿足,則稱點Q是線段AB的“倍分點”.
(1)若點A(1,0),AB=3,點Q是線段AB的“倍分點”.
①求點Q的坐標;
②若點A關(guān)于直線y=x的對稱點為A′,當(dāng)點B在第一象限時,求;
(2)⊙T的圓心T(0,t),半徑為2,點Q在直線y= x上,⊙T上存在點B,使點Q是線段AB的“倍分點”,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn):課堂上,學(xué)生對概念的接受能力s與提出概念的時間t(單位:min)之間近似滿足函數(shù)關(guān)系s=at2+bt+c(a≠0),s值越大,表示接受能力越強.如圖記錄了學(xué)生學(xué)習(xí)某概念時t與s的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出當(dāng)學(xué)生接受能力最強時,提出概念的時間為( 。
A. 8min B. 13min C. 20min D. 25min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,P為邊CD上一點,把△BCP沿直線BP折疊,頂點C折疊到C',連接BC'與AD交于點E,連接CE與BP交于點Q,若CE⊥BE.
(1)求證:△ABE∽△DEC;
(2)當(dāng)AD=13時,AE<DE,求CE的長;
(3)連接C'Q,直接寫出四邊形C'QCP的形狀: .當(dāng)CP=4時,并求CEEQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC繞O點逆時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1.
(2)在x軸上求作一點P,使△PA1C1的周長最小,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.
(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為2,求弦AB及PA,PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)社團成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為,米,且A、B、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+(m﹣1)x+3的圖象過點(2,﹣1),
(1)求此二次函數(shù)的解析式;
(2)畫出這個二次函數(shù)的圖象;并確定y>0時,x的取值范圍?
(3)設(shè)此二次函數(shù)圖象與x軸交點分別為A、B(A在B左側(cè))與y軸交點為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由8個大小相同的小正方體組合成的簡單幾何體.
(1)該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖;(邊框線加粗畫出,并涂上陰影)
(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和主視圖不變,那么請在下列網(wǎng)格圖中畫出添加小正方體后所得幾何體所有可能的左視圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com