精英家教網 > 初中數學 > 題目詳情

如圖,B,C為線段AD上兩點,且,,若AB繞B點旋轉,CD點旋轉,直至A、D兩點正好重合于點E為止,形成一個三角形,那么,下面三個不等式中哪些必須成立,并證明你的結論.①     ②   ③

 

 

 

【答案】

見解析

【解析】本題考查的是三角形的三邊關系

根據三角形的任兩邊之和大于第三邊、任兩邊之差小于第三邊即可判斷。

①③必須成立.由已知:,,

三式相加即得結論.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•深圳)如圖1,過點A(0,4)的圓的圓心坐標為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線y=-
1
2
x2+bx+c經過C、B兩點,與x軸的另一交點為D.
(1)點B的坐標為(
6
6
,
2
2
),拋物線的表達式為
y=-
1
2
x2+
9
2
x-7
y=-
1
2
x2+
9
2
x-7
;
(2)如圖2,求證:BD∥AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線y=-x2+b x+c經過點A(1,0),B(-3,0)兩點,且與y軸交于點C.
(1)求b,c的值.
(2)在第二象限的拋物線上,是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存在,請說明理由.
(3)如圖2,點E為線段BC上一個動點(不與B,C重合),經過B、E、O三點的圓與過點B且垂直于BC的直線交于點F,當△OEF面積取得最小值時,求點E坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•海陵區(qū)模擬)已知直線y=-
3
4
x+6
與x軸交于點B,與y軸交于點A.
(1)⊙P經過點O、A、B,試求點P的坐標;
(2)如圖2,點Q為線段AB上一點,QM⊥OA、QN⊥OB,連結MN,試求△MON面積的最大值;
(3)在∠OAB內是否存在點E,使得點E到射線AO和AB的距離相等,且這個距離等于點E到x軸的距離的
2
3
?若存在,請直接寫出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知C為線段AB的中點,D在線段CB上.若DA=6,DB=4,則CD=
1
1

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,C為線段AB上的一點,D是線段AC的中點,E為線段CB的中點.AB=9cm,AC=5cm.那么線段DE=
9
2
9
2
cm.

查看答案和解析>>

同步練習冊答案