【題目】班主任張老師為了了解學(xué)生課堂發(fā)言情況,對(duì)前一天本班男、女生發(fā)言次數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成如下頻數(shù)分布折線(xiàn)圖(圖1).

(1)請(qǐng)根據(jù)圖1,回答下列問(wèn)題:
①這個(gè)班共有名學(xué)生,發(fā)言次數(shù)是5次的男生有人、女生有人;
②男、女生發(fā)言次數(shù)的中位數(shù)分別是次和次;
(2)通過(guò)張老師的鼓勵(lì),第二天的發(fā)言次數(shù)比前一天明顯增加,全班發(fā)言次數(shù)變化的人數(shù)的扇形統(tǒng)計(jì)圖如圖2所示,求第二天發(fā)言次數(shù)增加3次的學(xué)生人數(shù)和全班增加的發(fā)言總次數(shù).

【答案】
(1)40;2;5;4;5
(2)

解:發(fā)言次數(shù)增加3次的學(xué)生人數(shù)為:40×(1﹣20%﹣30%﹣40%)=4(人)

全班增加的發(fā)言總次數(shù)為:

40%×40×1+30%×40×2+4×3,

=16+24+12,

=52次


【解析】解:(1)①(2+1+6+4+2+3+2)+(1+2+3+2+5+4+3)=20+20=40名;
發(fā)言次數(shù)是5次的男生有2人、女生有5人;
②∵按從小到大排序后,男生第10個(gè),11個(gè)都是4;女生第10個(gè),11個(gè)都是5.
∴男、女生發(fā)言次數(shù)的中位數(shù)分別是4;5;
(1)①男、女生人數(shù)相加即可得到全班人數(shù),在折線(xiàn)統(tǒng)計(jì)圖中分別找到發(fā)言次數(shù)是5次的男生、女生人數(shù);②中位數(shù)是一組數(shù)據(jù)重新排序后之間的一個(gè)數(shù)或之間兩個(gè)數(shù)的平均數(shù),由此即可求解男、女生發(fā)言次數(shù)的中位數(shù).(2)先求出發(fā)言次數(shù)增加3次的學(xué)生人數(shù)的百分比,乘以全班人數(shù),可得第二天發(fā)言次數(shù)增加3次的學(xué)生人數(shù);分別求出發(fā)言次數(shù)增加的次數(shù),相加即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織了主題為“讓勤儉節(jié)約成為時(shí)尚”的電子小組作品征集活動(dòng),現(xiàn)從中隨機(jī)抽取部分作品,按A,B,C,D四個(gè)等級(jí)進(jìn)行評(píng)價(jià),并根據(jù)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)求抽取了多少份作品;
(2)此次抽取的作品中等級(jí)為B的作品有 , 并補(bǔ)全條形統(tǒng)計(jì)圖 ;
(3)若該校共征集到800份作品,請(qǐng)估計(jì)等級(jí)為A的作品約有多少份.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月26日,2015黃河口(東營(yíng))國(guó)際馬拉松比賽拉開(kāi)帷幕,中央電視臺(tái)體育頻道用直升機(jī)航拍技術(shù)全程直播.如圖,在直升機(jī)的鏡頭下,觀(guān)測(cè)馬拉松景觀(guān)大道A處的俯角為30°,B處的俯角為45°.如果此時(shí)直升機(jī)鏡頭C處的高度CD為200米,點(diǎn)A、D、B在同一直線(xiàn)上,則AB兩點(diǎn)的距離是米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB交弧BC于點(diǎn)D,連接CD、OD,給出以下四個(gè)結(jié)論:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CEAB.其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)y=kx+3(k<0)分別交x軸、y軸于A、B兩點(diǎn),線(xiàn)段OA上有一動(dòng)點(diǎn)P由原點(diǎn)O向點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,過(guò)點(diǎn)P作x軸的垂線(xiàn)交直線(xiàn)AB于點(diǎn)C,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)k=﹣1時(shí),線(xiàn)段OA上另有一動(dòng)點(diǎn)Q由點(diǎn)A向點(diǎn)O運(yùn)動(dòng),它與點(diǎn)P以相同速度同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng)(如圖1).
①直接寫(xiě)出t=1秒時(shí)C、Q兩點(diǎn)的坐標(biāo);
②若以Q、C、A為頂點(diǎn)的三角形與△AOB相似,求t的值.
(2)當(dāng) 時(shí),設(shè)以C為頂點(diǎn)的拋物線(xiàn)y=(x+m)2+n與直線(xiàn)AB的另一交點(diǎn)為D(如圖2),
①求CD的長(zhǎng);
②設(shè)△COD的OC邊上的高為h,當(dāng)t為何值時(shí),h的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,有一個(gè)菱形BFDE(點(diǎn)E,F(xiàn)分別在線(xiàn)段AB,CD上),記它們的面積分別為SABCD和SBFDE , 現(xiàn)給出下列命題正確的是( )
①若 ,則 ;
②若DE2=BDEF,則DF=2AD.
A.①是真命題,②是真命題
B.①是真命題,②是假命題
C.①是假命題,②是真命題
D.①是假命題,②是假命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,線(xiàn)段OA,OB的中點(diǎn)分別為E,F(xiàn).

(1)求證:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直線(xiàn)EF與線(xiàn)段AD,BC分別相交于點(diǎn)G,H,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,△ABC中,AB=AC,點(diǎn)D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過(guò)點(diǎn)A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問(wèn)題得到解決.

(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個(gè))
參考小明思考問(wèn)題的方法,解答下列問(wèn)題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點(diǎn),E為DC的中點(diǎn),點(diǎn)F在AC的延長(zhǎng)線(xiàn)上,且∠CDF=∠EAC,若CF=2,求AB的長(zhǎng);
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、E分別在AB、AC邊上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若SDOE:SCOA=1:25,則SBDE與SCDE的比是(  )
A.1:3
B.1:4
C.1:5
D.1:25

查看答案和解析>>

同步練習(xí)冊(cè)答案