當(dāng)a>0且x>0時(shí),因?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/268030.png' />≥0,所以數(shù)學(xué)公式≥0,從而數(shù)學(xué)公式數(shù)學(xué)公式(當(dāng)數(shù)學(xué)公式時(shí)取等號(hào)).記函數(shù)數(shù)學(xué)公式,由上述結(jié)論可知:當(dāng)數(shù)學(xué)公式時(shí),該函數(shù)有最小值為數(shù)學(xué)公式
(1)已知函數(shù)y1=x(x>0)與函數(shù)數(shù)學(xué)公式,則當(dāng)x=______時(shí),y1+y2取得最小值為______.
(2)已知函數(shù)y1=x+1(x>-1)與函數(shù)數(shù)學(xué)公式,求數(shù)學(xué)公式的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值.

解:(1)∵函數(shù)),由上述結(jié)論可知:當(dāng)時(shí),該函數(shù)有最小值為
∴函數(shù)y1=x(x>0)與函數(shù),則當(dāng)x==1,即x=1時(shí),y1+y2取得最小值為2.
故答案是:1;2.

(2)∵已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),
,
有最小值為
當(dāng),即x=1時(shí)取得該最小值.
檢驗(yàn):x=1時(shí),x+1=2≠0,
故x=1是原方程的解.
所以,的最小值為4,相應(yīng)的x的值為1.
分析:(1)可以直接套用題意所給的結(jié)論,即可得出結(jié)果.
(2)先得出的表達(dá)式,然后將(x+1)看做一個(gè)整體,繼而再運(yùn)用所給結(jié)論即可.
點(diǎn)評(píng):此題考查了二次函數(shù)的應(yīng)用,題目出的比較新穎,解答本題的關(guān)鍵是仔細(xì)審題,理解題意所給的結(jié)論,達(dá)到學(xué)以致用的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M是OB的中點(diǎn),CM的延長線交⊙O于點(diǎn)E,設(shè)DE=
a
(a>0)
,EM=x.
(1)用含x和a的代數(shù)式表示MC的長,并求證:x2-
64-a
•x+12=0

(2)當(dāng)a=15,且EM>MC時(shí),求sin∠EOM的值;
(3)根據(jù)圖形寫出EM的長的取值范圍.試問:在弧DB上是否存在一點(diǎn)E,使EM的長是關(guān)于x的方精英家教網(wǎng)x2-
64-a
•x+12=0
的相等實(shí)數(shù)根?如果存在,求出sin∠EOM的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽城)知識(shí)遷移
   當(dāng)a>0且x>0時(shí),因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(
x
-
a
x
)
2
≥0,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當(dāng)x=
a
)是取等號(hào)).
   記函數(shù)y=x+
a
x
(a>0,x>0).由上述結(jié)論可知:當(dāng)x=
a
時(shí),該函數(shù)有最小值為2
a

直接應(yīng)用
   已知函數(shù)y1=x(x>0)與函數(shù)y2=
1
x
(x>0),則當(dāng)x=
1
1
時(shí),y1+y2取得最小值為
2
2

變形應(yīng)用
   已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值.
實(shí)際應(yīng)用
   已知某汽車的一次運(yùn)輸成本包含以下三個(gè)部分,一是固定費(fèi)用,共360元;二是燃油費(fèi),每千米1.6元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為0.001.設(shè)該汽車一次運(yùn)輸?shù)穆烦虨閤千米,求當(dāng)x為多少時(shí),該汽車平均每千米的運(yùn)輸成本最低?最低是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)a>0且x>0時(shí),因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(
x
-
a
x
)2≥0,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當(dāng)x=
a
時(shí)取等號(hào)).記函數(shù)y=x+
a
x
(a>0,x>0)
,由上述結(jié)論可知:當(dāng)x=
a
時(shí),該函數(shù)有最小值為2
a

(1)已知函數(shù)y1=x(x>0)與函數(shù)y2=
1
x
(x>0)
,則當(dāng)x=
1
1
時(shí),y1+y2取得最小值為
2
2

(2)已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
當(dāng)a>0且x>0時(shí),因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(
x
-
a
x
)2≥0,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當(dāng)x=
a
時(shí)取等號(hào)).設(shè)y=x+
a
x
(a>0,x>0)
,由上述結(jié)論可知:當(dāng)x=
a
時(shí),y有最小值為2
a

直接應(yīng)用:已知y1=x(x>0)與y2=
1
x
(x>0)
,則當(dāng)x=
1
1
時(shí),y1+y2取得最小值為
2
2

變形應(yīng)用:已知y1=x+1(x>-1)與y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值.
實(shí)戰(zhàn)演練:
在平面直角坐標(biāo)系中,點(diǎn)A(-3,0),點(diǎn)B(0,-2).點(diǎn)P是函數(shù)y=
6
x
在第一象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作PC垂直于x軸,PD垂直于y軸,垂足分別為點(diǎn)C、D.設(shè)點(diǎn)P的橫坐標(biāo)為x,四邊形ABCD的面積為S.
(1)求S和x之間的函數(shù)關(guān)系;
(2)求S的最小值,判斷此時(shí)的四邊形ABCD是何特殊的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)a
≠-1
≠-1
且b
=4
=4
時(shí),方程(a+1)xb-3+5=0是一元一次方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案