小剛在學(xué)習(xí)絕對值的時(shí)候發(fā)現(xiàn):|3-1|可表示數(shù)軸上3和1這兩點(diǎn)間的距離;而|3+1|即|3-(-1)|則表示3和-1這兩點(diǎn)間的距離.根據(jù)上面的發(fā)現(xiàn),小剛將|x-2|看成x與2這兩點(diǎn)在數(shù)軸上的距離;那么|x+3|可看成x與______在數(shù)軸上的距離.小剛繼續(xù)研究發(fā)現(xiàn):x取不同的值時(shí),|x-2|+|x+3|=5有最 值,請你借助數(shù)軸解決下列問題
(1)當(dāng)|x-2|+|x+3|=5時(shí),x可取整數(shù)______(寫出一個(gè)符合條件的整數(shù)即可);
(2)若A=|x+1|+|x-5|,那么A的最小值是______;
(3)若B=|x+2|+|x|+|x-1|,那么B的最小值是______,此時(shí)x為______;
(4)寫出|x+5|+|x+3|+|x+1|+|x-2|的最小值.
解:∵|x+3|=|x-(-3)|,
∴|x+3|可看成x與-3的點(diǎn)在數(shù)軸上的距離;
(1)x=0時(shí),|x-2|+|x+3|=|-2|+|3|=2+3=5;
(2)|x+1|+|x-5|表示x到點(diǎn)-1與到點(diǎn)5的距離之和,
當(dāng)-1≤x≤5時(shí),A有最小值,即表示數(shù)5的點(diǎn)到表示數(shù)-1的點(diǎn)的距離,所以A的最小值為6;
(3)|x+2|+|x|+|x-1|表示x到數(shù)-2、0、1三點(diǎn)的距離之和,
所以當(dāng)x=0時(shí),它們的距離之和最小,
即B的最小值為3,此時(shí)x=0;
(4)|x+5|+|x+3|+|x+1|+|x-2|表示x到數(shù)-5、-3、-1、2四點(diǎn)的距離之和,
所以當(dāng)-3≤x≤-1時(shí),它們的距離之和有最小值9,即|x+5|+|x+3|+|x+1|+|x-2|的最小值為9.
分析:根據(jù)絕對值的幾何意義得到|x+3|可看成x與-3的點(diǎn)在數(shù)軸上的距離;
(1)當(dāng)-3≤x≤2時(shí),|x-2|+|x+3|=5,然后在次范圍內(nèi)寫一整數(shù)即可;
(2)由于|x+1|+|x-5|表示x到點(diǎn)-1與到點(diǎn)5的距離之和,然后在-1≤x≤5范圍內(nèi)取一x的值代入可得到A的最小值;
(3)由于|x+2|+|x|+|x-1|表示x到數(shù)-2、0、1三點(diǎn)的距離之和,則當(dāng)x=0時(shí),B有最小值;
(4)由于|x+5|+|x+3|+|x+1|+|x-2|表示x到數(shù)-5、-3、-1、2四點(diǎn)的距離之和,在-3≤x≤-1范圍內(nèi)任取一x的值代入計(jì)算可得到|x+5|+|x+3|+|x+1|+|x-2|的最小值.
點(diǎn)評:本題考查了絕對值:若a>0,則|a|=a;若a=0,則|a|=0;若a<0,則|a|=-a.也考查了數(shù)軸.