【題目】化簡:(1) x2y-3xy2+2yx2-y2x;(2)(-ab+2a)-(3a-ab).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,周長為20cm,對角線AC交BD于點(diǎn)O,△OAB比△OBC的周長多4,則邊AB= cm,BC= cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣4).
(1)求該二次函數(shù)的解析;
(2)若點(diǎn)P、Q同時從A點(diǎn)出發(fā),以每秒1個單位長度的速度分別沿AB、AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.
①當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時,在x軸上是否存在點(diǎn)E,使得以A、E、Q為頂點(diǎn)的三角形為等腰三角形?若存在,請求出E點(diǎn)的坐標(biāo);若不存在,請說明理由.
②當(dāng)P、Q運(yùn)動到t秒時,△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請直接寫出t的值及D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm。
(1)若P、Q是△ABC邊上的兩個動點(diǎn),其中點(diǎn)P從A沿A→B方向運(yùn)動,速度為每秒1cm,點(diǎn)Q從B沿B→C方向運(yùn)動,速度為每秒2cm,兩點(diǎn)同時出發(fā),設(shè)出發(fā)時間為t秒.(1)、當(dāng)t=1秒時,求PQ的長;(2)、從出發(fā)幾秒鐘后,△PQB是等腰三角形?(3)、若M在△ABC邊上沿B→A→C方向以每秒3cm的速度運(yùn)動,則當(dāng)點(diǎn)M在邊CA上運(yùn)動時,求△BCM成為等腰三角形時M運(yùn)動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖①,在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖①所示,其中,DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD,ME,MF,MG.則下列結(jié)論正確的是__________(填寫序號)
①四邊形AFMG是菱形;②△DFM和△EGM都是等腰三角形;③MD=ME;④MD⊥ME.
(2)數(shù)學(xué)思考:
如圖②,在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,M是BC的中點(diǎn),連接MD和ME,則MD與ME具有怎樣的數(shù)量和位置關(guān)系?請給出證明過程.
(3)類比探究:如圖③Rt△ABC中,斜邊BC=10,AB=6,分別以AB、AC為斜邊作等腰直角三角形ABD和ACE,請直接寫出DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,DE平分∠ADC交AB于點(diǎn)E,BF平分∠ABC,交CD于點(diǎn)F.
(1)、求證:DE=BF;(2)、連接EF,寫出圖中所有的全等三角形.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)D的坐標(biāo)是(﹣3,1),點(diǎn)A的坐標(biāo)是(4,3).
(1)點(diǎn)B和點(diǎn)C的坐標(biāo)分別是______、______.
(2)將△ABC平移后使點(diǎn)C與點(diǎn)D重合,點(diǎn)A、B與點(diǎn)E、F重合,畫出△DEF.并直接寫出E、F的坐標(biāo).
(3)若AB上的點(diǎn)M坐標(biāo)為(x,y),則平移后的對應(yīng)點(diǎn)M′的坐標(biāo)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com