【題目】維修一項工程,甲、乙兩隊合做,天能完成,共付工錢元,甲隊每天的工錢比乙隊多.若兩隊獨做,乙隊工期是甲隊的.

(1)甲、乙兩隊獨做各需多少天完成?

(2)若兩隊獨做,哪隊工錢總額較少?

【答案】1)甲、乙兩隊獨做分別需要天,天完成;(2)兩隊獨做,甲隊工錢總額較少,見解析

【解析】

1)設甲隊獨做需天完成,則乙隊獨做需天完成,表示出各自效率,再根據(jù)兩隊合做,天能完成列出方程即可解答;.2)設付乙隊每天工錢元,則付甲隊每天工錢元,再根據(jù)合作6天完成,共付工錢元,列出方程即可解答.

: (1)設甲隊獨做需天完成,則乙隊獨做需天完成.由題意,得

(或

,

經檢驗:x=10是方程的解.

甲、乙兩隊獨做分別需要天,天完成.

(2)設付乙隊每天工錢元,則付甲隊每天工錢.由題意,得

.

..

.

甲隊獨做工錢總額為.

乙隊獨做工錢總額為.

兩隊獨做,甲隊工錢總額較少.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,點,直線軸于點

(1)求直線的表達式和點的坐標;

(2)在直線上有一點,使得的面積為4,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知BD平分∠ABF,且交AE于點D.

(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)設AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習等邊三角形時發(fā)現(xiàn)了直角三角形的一個性質:直角三角形中,角所對的直角邊等于斜邊的一半。小明同學對以上結論作了進一步探究.如圖1,在中,,則:.

探究結論:(1)如圖1,邊上的中線,易得結論:________三角形.

2)如圖2,在中,邊上的中線,點是邊上任意一點,連接,在邊上方作等邊,連接.試探究線段之間的數(shù)量關系,寫出你的猜想加以證明.

拓展應用:如圖3,在平面直角坐標系中,點的坐標為,點軸正半軸上的一動點,以為邊作等邊,當點在第一象內,且時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線軸于點,交軸于點.

1)如圖①,若的坐標為,且于點于點,試求點的坐標;

2)如圖②,在(I)的條件下,連接,求的度數(shù);

3)如圖③,若點的中點,點軸正半軸上一動點,連接,過軸于點,當點在軸正半軸上運動的過程中,式子的值是否發(fā)生改變?如發(fā)生改變,求出該式子的值的變化范圍;若不改變,求該式子的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市文化宮學習十九大有關優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學捐贈書包活動首次用2000元在商店購進一批學生書包,活動進行后發(fā)現(xiàn)書包數(shù)量不夠,又購進第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結果第二批用了6300元.

(1)求文化官第一批購進書包的單價是多少?

(2)商店兩批書包每個的進價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的兩個根,則實數(shù)a、b、m、n的大小關系是( 。

A. a<m<n<b B. m<a<b<n C. a<m<b<n D. m<a<n<b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:①4a+b=09a+c>3b;8a+7b+2c>0④若點A(﹣3,y1),點B(﹣2,y2),點C(8,y3)在該函數(shù)圖象上,則y1<y3<y2⑤若方程a(x﹣1)(x﹣5)=﹣3的兩根為x1x2,且x1<x2,則x1<﹣l<5<x2,其中正確的結論有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習冊答案