已知:如圖,點D在AB上,點E在AC上,BE和CD相交于點O,AB=AC,∠B=∠C.求證:BD=CE.
分析:由兩角和夾邊即可得出△ABE≌△ACD,由全等三角形的性質(zhì)可到AE=AD,進而可得出結(jié)論BD=CE.
解答:證明:在△ABE和△ACD中,
∠A=∠A
AB=AC
∠B=∠C
,
∴△ABE≌△ACD(ASA),
∴AE=AD,
∵BD=AB-AD,CE=AC-AE,
∴BD=CE.
點評:本題主要考查了全等三角形的判定及性質(zhì)問題,應(yīng)熟練掌握,也是中考常見題型.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(1998•南京)已知:如圖,點P在∠AOB的邊OA上.
(1)作圖(保留作圖痕跡)
①作∠AOB的平分線OM;
②以P為頂點,作∠APQ=∠AOB,PQ交OM于點C;
③過點C作CD⊥OB,垂足為點D.
(2)當∠AOB=30°時,求證:PC=2CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點C在BE上,AB∥ED,AB=CE,BC=ED.
求證:∠ACB=∠D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,點F在AB上,點E在CD上,AE、DF分別交BC于H、G,∠A=∠D,∠FGB+∠EHG=180°,問AB與CD有怎樣的位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖,點C在線段AB上,AC=18cm,BC=6cm,點M、N分別是AC、BC的中點,求MN的長;
(2)把(1)中的“點C在線段AB上”改為“點C在直線AB上”,其它條件不變,則MN的長是多少?請說明你的理由.

查看答案和解析>>

同步練習冊答案