【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,CD⊥AB,垂足為E,連接BC、BD.點F為線段CB上一點,連接DF,若CE=2,AB=8,BF=,則tan∠CDF=__.
【答案】
【解析】
連接OA,如圖,設(shè)⊙O的半徑為r,則OA=r,OE=r﹣2,利用垂徑定理得到AE=BE=AB=4,再利用勾股定理計算出BC=2,42+(r﹣2)2=r2,解得r=5,則OE=3,接著判斷F點為BC的中點,作FH⊥CE于H,則FH=BE=2,HE=CE=1,然后利用正切的定義得到tan∠CDF的值.
連接OA,如圖,設(shè)⊙O的半徑為r,則OA=r,OE=r﹣2,
∵CD⊥AB,
∴AE=BE=AB=4,
在Rt△BCE中,BC==2,
在Rt△OAE中,42+(r﹣2)2=r2,解得r=5,
∴OE=3,
∵BF=,
∴F點為BC的中點,
作FH⊥CE于H,如圖,
∴FH為△BCE的中位線,
∴FH=BE=2,HE=CE=1,
在Rt△DHF中,tan∠CDF===.
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因抖音等新媒體的傳播,西安已成為最著名的網(wǎng)紅旅游城市之一,2018年“十一”黃金周期間,接待游客已達萬人次,古城西安美食無數(shù),一家特色小面店希望在長假期間獲得較好的收益,經(jīng)測算知,該小面的成本價為每碗元,借鑒以往經(jīng)驗;若每碗小面賣元,平均每天能夠銷售碗,若降價銷售,毎降低元,則平均每天能夠多銷售碗.為了維護城市形象,店家規(guī)定每碗小面的售價不得超過元,則當(dāng)每碗小面的售價定為多少元時,店家才能實現(xiàn)每天盈利元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點A、B、C的坐標分別是(1,0)、(3,1)、(3,3),雙曲線y=(k≠0,x>0)過點D.
(1)寫出D點坐標;
(2)求雙曲線的解析式;
(3)作直線AC交y軸于點E,連結(jié)DE,求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,按下列步驟作圖:①以點A為圓心,適當(dāng)長為半徑畫弧,分別交AC,AB于點D,E;②分別以D,E為圓心,DE的長為半徑畫弧,兩弧相交于點F;③作射線AF,交BC于點G,則CG=( 。
A.3B.6C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有一棟教學(xué)樓AB,小明(身高忽略不計)在教學(xué)樓一側(cè)的斜坡底端C處測得教學(xué)樓頂端A的仰角為68°,他沿著斜坡向上行走到達斜坡頂端E處,又測得教學(xué)樓頂端A的仰角為45°.已知斜坡的坡角(∠ECD)為30°,坡面長度CE=6m,求樓房AB的高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan68°≈2.48,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市有甲、乙兩種商品,若買1件甲商品和2件乙商品,共需80元;若買2件甲商品和3件乙商品,共需135元.
(1)求甲、乙兩種商品每件售價分別是多少元;
(2)甲商品每件的成本是20元,根據(jù)市場調(diào)查:若按(1)中求出的單價銷售,該超市每天銷售甲商品100件;若銷售單價每上漲1元,甲商品每天的銷售量就減少5件.寫出甲商品每天的銷售利潤y(元)與銷售單價(x)元之間的函數(shù)關(guān)系,并求每件售價為多少元時,甲商品每天的銷售利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若點C是線段AB的黃金分割點,AB=2,則AC=
B.平面內(nèi),經(jīng)過矩形對角線交點的直線,一定能平分它的面積
C.兩個正六邊形一定位似
D.菱形的兩條對角線互相垂直且相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,矩形DEFG的頂點G、F分別在邊AC、BC上,D、E在邊AB上.
(1)求證:△ADG∽△FEB;
(2)若AD=2GD,則△ADG面積與△BEF面積的比為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com