等腰三角形一腰上的中線把周長分為33cm和24cm兩部分,則它的腰長是________.

22cm或16cm
分析:首先根據(jù)題意畫出圖形,然后設(shè)AD=xcm,由AD是△ABC的中線,可得AD=CD=xcm,AB=AC=2xcm,然后分別從①若AB+AD=33cm與②若AB+AD=24cm去分析,即可求得答案.
解答:解:如圖:設(shè)AD=xcm,
∵AD是△ABC的中線,
∴AD=CD=xcm,AB=AC=2xcm,
①若AB+AD=33cm,
則2x+x=33,
解得:x=11,
∴AD=CD=11cm,AB=AC=22cm,
∵BC+CD=24cm,
∴BC=13cm,
∵22cm,22cm,13cm能組成三角形,
∴它的腰長為22cm;
②若AB+AD=24cm,
則2x+x=24,
解得:x=8,
∴AD=CD=8cm,AB=AC=16cm,
∵BC+CD=33cm,
∴BC=25cm,
∵16cm,16cm,25cm能組成三角形,
∴它的腰長為16cm;
綜上可得:它的腰長為22cm或16cm.
故答案為:22cm或16cm.
點評:主要考查了等腰三角形的性質(zhì).解題的關(guān)鍵是利用等腰三角形的兩腰相等和中線的性質(zhì)求出腰長,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

思考下列命題:
(1)等腰三角形一腰上的高線等于腰長的一半,則頂角為75度;
(2)兩圓圓心距小于兩圓半徑之和,則兩圓相交;
(3)在反比例函數(shù)y=
2
x
中,如果函數(shù)值y<1時,那么自變量x>2;
(4)圓的兩條不平行弦的垂直平分線的交點一定是圓心;
(5)三角形的重心是三條中線的交點,而且一定在這個三角形的內(nèi)部;
其中正確命題的有幾個(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、下列命題中不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

邊長為整數(shù)的等腰三角形一腰上的中線將其周長分為1:2的兩部分,那么所有這些等腰三角形中,面積最小的三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=AC,AB的垂直平分線與AC所在的直線相交所得到銳角為56°,則∠B等于
 
.若等腰三角形一腰上的高和另一腰的夾角為25°,則該三角形的一個底角是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在下列命題中:
①等腰三角形的對稱軸是底邊上的高;
②等腰三角形的角平分線、中線和高互相重合;
③等腰三角形一腰上的高與另一腰的夾角為60°,則這個等腰三角形的頂角是30°;
④等腰三角形的三邊均為整數(shù),且周長為13,則底邊是3或5;
⑤等腰三角形頂角的外角平分線平行于底邊;
⑥等腰三角形一腰上的高與底邊的夾角等于頂角的一半;
其中正確的個數(shù)是
2
2
個.

查看答案和解析>>

同步練習(xí)冊答案