在等腰△ABC中,AB=AC,邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角度m得到線段AD.
(1)如圖1,若∠BAC=30°,30°<m<l80°,連接BD,請(qǐng)用含m的式子表示∠DBC的度數(shù);
(2)如圖2,若∠BAC=60°,0°<m<360°,連接BD、DC,直接寫(xiě)出△BDC為等腰三角形時(shí)m所有可能的取值.
(3)如圖3,若∠BAC=90°,射線AD與直線BC相交于點(diǎn)E,是否存在旋轉(zhuǎn)角度m,使AE:BE=數(shù)學(xué)公式,若存在,求出所有符合條件的m的值,若不存在,請(qǐng)說(shuō)明理由.

解:(1)∠ABC=(180°-30°)÷2=75°,
∠ABD=(180°-m)÷2=90°-m,
∠DBC=∠ABC-∠ABD=75°-(90°-m)=m-15°;

(2)由分析圖形可知m的取值為:30°,120°,210°,300°;

(3)存在2個(gè)符合條件的m的值:m=30°或m=330°.
如圖①:過(guò)E作EF⊥AB于F.
在Rt△BEF中,∵∠FBE=45°,
∴BE=EF,
在Rt△AEF中,∵∠FAE=30°,
∴AE=2EF,
∴AE:BE=;
如圖②:同理可得:AE:BE=
分析:(1)根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)分別求出∠ABC,∠ABD的度數(shù),相減即可求解;
(2)分四種情況:討論得到△BDC為等腰三角形時(shí)m的取值;
(3)分E點(diǎn)在BC上和CB的延長(zhǎng)線上兩種情況討論求解.
點(diǎn)評(píng):綜合考查了等腰三角形的性質(zhì),等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),注意分類(lèi)思想的運(yùn)用,是考試壓軸題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖所示,在等腰△ABC中,點(diǎn)D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別為E、F,圖中有幾對(duì)全等三角形( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)如圖,在等腰△ABC中,底邊BC的中點(diǎn)是點(diǎn)D,底角的正切值是
1
3
,將該等腰三角形繞其腰AC上的中點(diǎn)M旋轉(zhuǎn),使旋轉(zhuǎn)后的點(diǎn)D與A重合,得到△A′B′C′,如果旋轉(zhuǎn)后的底邊B′C′與BC交于點(diǎn)N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在等腰△ABC中,AB=AC,∠A=80°,則一腰上的高CD與底邊BC的夾角為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點(diǎn).若BC=8cm,則△BCE的周長(zhǎng)是
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰△ABC中,∠ABC=90°,D為底邊AC中點(diǎn),過(guò)D點(diǎn)作DE⊥DF,交AB于E,交BC于F.若AE=12,F(xiàn)C=5,
(1)試說(shuō)明DE=DF;
(2)求EF長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案