如圖1,⊙O是△ABC的外接圓,AB是直徑,OD∥AC,且∠CBD=∠BAC,OD交⊙O于點E.
(1)求證:BD是⊙O的切線;
(2)若點E為線段OD的中點,證明:以O(shè)、A、C、E為頂點的四邊形是菱形;
(3)作CF⊥AB于點F,連接AD交CF于點G(如圖2),求FG FC 的值.

(1)(2)見解析(3)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若D是AB中點,E是BC中點,若AC=8,EC=3,AD=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長為8的菱形ABCD中,若∠ABC=60°,
(1)如圖1,E是AB中點,P在DB上運動,求:PA+PE的最小值.
(2)如圖2,DM交AC于點N.若AM=6,∠ABN=α,求點M到AD的距離及tanα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點P是AB的中點
(1)經(jīng)過點P畫BC的平行線交AC于點Q;
(2)經(jīng)過點Q畫垂線段QE,交BC于點E.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點O是AB上的一點,OC為任意一條射線,另有OD,OE分別平分∠AOC,∠BOC.
(1)已知∠AOC=40°,求∠DOE的度數(shù);
(2)當∠BOC=110°時,∠DOE=
90°
90°
(填度數(shù));
(3)由(1)(2)的結(jié)果,你能得到什么結(jié)論?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若E是AB的中點,AF=
2
3
AE,且EF=2,則AB的長為( 。

查看答案和解析>>

同步練習(xí)冊答案