【題目】如圖所示,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,BD,CE交于點(diǎn)O,且AO平分∠BAC,則圖中的全等三角形共有________對.
【答案】4
【解析】
根據(jù)題目條件,全等三角形有:△ABO≌△ACO,△AEC≌△ADB,△AEO≌△ADO,△BEO≌△CDO共4對.解題時(shí)要根據(jù)已知條件結(jié)合判定方法逐個(gè)驗(yàn)證,做到由易到難,不重不漏.
①在△AEO與△ADO中
∵CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,AO平分∠BAC,
∴∠AEO=∠ADO=90°,∠EAO=∠DAO
∵AO=AO
∴△AEO≌△ADO(AAS)
∴AE=AD,OE=OD;
②在△OBE與△OCD中
∵∠OEB=∠0DC=90°,∠EOB=∠DOC,OE=OD
∴△OBE≌△OCD(AAS)
∴OB=OC,BE=DC,∠B=∠C;
③在△ABO與△ACO中
∵AE=AD
∴AB=AC
∵AB=AC,AO=AO,BO=CO
∴△ABO≌△ACO(SSS)
④在△AEC與△ADB中
∵∠AEC=∠ADB=90°,AC=AB,AE=AD
∴△AEC≌△ADB(HL)
所以共有4對全等三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市組織的大型商業(yè)演出活動(dòng)中,對團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門票的原定票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對于個(gè)人購票也采取優(yōu)惠政策,原定票價(jià)經(jīng)過連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形中,∠A=∠C=90°.
(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補(bǔ)角,請寫出BE與DF的位置關(guān)系,并證明.
(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DE與BF位置關(guān)系并證明.
(3)如圖3,若BE、DE分別五等分∠ABC、∠ADC的鄰補(bǔ)角(即∠CDE=,∠CBE=),則∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的正方形按照一定規(guī)律所組成的,其中第①個(gè)圖形中一個(gè)有2個(gè)正方形,第②個(gè)圖形中一共有8個(gè)正方形,第③個(gè)圖形中一共有16個(gè)正方形,…,按此規(guī)律,第⑦個(gè)圖形中正方形的個(gè)數(shù)為( 。
A. 56 B. 65 C. 68 D. 71
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B、C、D、E在同一直線上,且AC=BD,E是線段BC的中點(diǎn).
(1)點(diǎn)E是線段AD的中點(diǎn)嗎?說明理由;
(2)當(dāng)AD=10,AB=3時(shí),求線段BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個(gè)數(shù)是( 。
(1)﹣a表示負(fù)數(shù);
(2)多項(xiàng)式﹣3a2b+7a2b2﹣2ab+l的次數(shù)是3;
(3)單項(xiàng)式﹣的系數(shù)為﹣2;
(4)一個(gè)有理數(shù)不是整數(shù)就是分?jǐn)?shù)
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是經(jīng)過∠BCA的頂點(diǎn)C的一條直線,CA=CB,E,F(xiàn)是直線CD上的兩點(diǎn),且∠BEC=∠CFA=α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個(gè)問題:
①如圖(a),若∠BCA=90°,α=90°,則BE________CF,EF________|BE-AF|(填“>”“<”或“=”);
②如圖(b),若0°<∠BCA<180°,請?zhí)砑右粋(gè)關(guān)于α與∠BCA關(guān)系的條件________,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立;
(2)如圖(c),若直線CD經(jīng)過∠BCA的外部,∠BCA=α,請寫出EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF= ,求⊙O的半徑r及sinB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com