(2010•越秀區(qū)二模)如圖,正方形ABCD中,P是直線CD上一動點(diǎn)(不與C、D重合),過BC邊的中點(diǎn)E作直線EF⊥BP于F,直線EF交直線AB于H,過A作AQ⊥EF于Q.如圖①,當(dāng)點(diǎn)H在BA上時,易證:AQ+BF=2EF.
(1)當(dāng)點(diǎn)H在BA的延長線上時,如圖②,猜想AQ、BF、EF之間有怎樣的數(shù)量關(guān)系,并說明理由;
(2)當(dāng)點(diǎn)H在AB的延長線上時,如圖③,請直接寫出AQ、BF、EF之間的數(shù)量關(guān)系.

【答案】分析:(1)可過A點(diǎn)作AM∥HE交BC于M點(diǎn),交BF于N點(diǎn),很容易證明△ABN和△BEF相似,也很容易證AQ=NF,問題就可以證明.
(2)AQ、BF、EF滿足AQ-BF=2EF,也可通過作輔助線得到結(jié)論.
解答:解:(1)BF-AQ=2EF.
過A點(diǎn)作AM∥HE交BC于M點(diǎn),交BF于N點(diǎn).
∵∠PBC+∠ABP=90°,∠BAM+∠ABP=90°,
∴∠PBC=∠BAM.
∵∠ANB=∠EFB=90°.
∴△BEF∽△ABN.
==2.
∵AQ=NF,
∴BN=BF-AQ.
∴BF-AQ=2EF.

(2)AQ-BF=2EF.
點(diǎn)評:本題考查正方形的性質(zhì),正方形的四邊相等,四個角都是直角,根據(jù)正方形的性質(zhì)作出輔助線很容易證明兩個三角形相似,再根據(jù)相似三角形的對應(yīng)邊成比例可求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市望奎五中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)已知,如圖,在直角坐標(biāo)系內(nèi),△ABC的頂點(diǎn)在坐標(biāo)軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實(shí)數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=,P是AB的中點(diǎn),求過C、P兩點(diǎn)的直線解析式;
(3)在(2)問的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以點(diǎn)O、M、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省雞西市三校聯(lián)考中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)已知,如圖,在直角坐標(biāo)系內(nèi),△ABC的頂點(diǎn)在坐標(biāo)軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實(shí)數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=,P是AB的中點(diǎn),求過C、P兩點(diǎn)的直線解析式;
(3)在(2)問的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以點(diǎn)O、M、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市望奎五中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)某農(nóng)戶家有7口人,在春季播種時節(jié)承包了村里80畝田地種植作物,種植的四個項(xiàng)目的任務(wù)和四個項(xiàng)目的面積比例以及每人每天完成各項(xiàng)目的工作量如圖所示.

(1)從上述統(tǒng)計(jì)圖可知每人每天種水稻______畝,種水稻、玉米、小麥、大豆的面積分別是______畝、______畝、______畝、______畝;
(2)如果x人每天種水稻的面積是y畝,那么y與x的關(guān)系式是______;
(3)他們一起完成種植小麥和大豆任務(wù)之后,把這7個人分成兩部分,______人種水稻;______人種玉米,就能最快地完成任務(wù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市望奎五中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)已知梯形的一底邊為6,兩腰長分別為13和15,高為12,畫出圖形,并分別求出面積.

查看答案和解析>>

同步練習(xí)冊答案