如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H.
(1)求直線AC的解析式;
(2)連接BM,如圖2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當(dāng)t為何值時(shí),∠MPB與∠BCO互為余角,并求此時(shí)直線OP與直線AC所夾銳角的正切值.

解:(1)過點(diǎn)A作AE⊥x軸垂足為E,如圖(1)
∵A(-3,4),
∴AE=4 OE=3,
∴OA==5,
∵四邊形ABCO為菱形,
∴OC=CB=BA=0A=5,
∴C(5,0)
設(shè)直線AC的解析式為:y=kx+b,
,
,
∴直線AC的解析式為y=-x+

(2)由(1)得M點(diǎn)坐標(biāo)為(0,),
∴OM=,
如圖(1),當(dāng)P點(diǎn)在AB邊上運(yùn)動(dòng)時(shí)
由題意得OH=4,
∴HM=OH-OM=4-=,
∴s=BP•MH=(5-2t)•
∴s=-t+(0≤t<),2分
當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),記為P1,
∵∠OCM=∠BCM,CO=CB,CM=CM,
∴△OMC≌△BMC,
∴OM=BM=,∠MOC=∠MBC=90°,
∴S=P1B•BM=(2t-5),
∴S=t-<t≤5),2分

(3)設(shè)OP與AC相交于點(diǎn)Q連接OB交AC于點(diǎn)K,
∵∠AOC=∠ABC,
∴∠AOM=∠ABM,
∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOH=90°,
∴∠MPB=∠AOH,
∴∠MPB=∠MBH.
當(dāng)P點(diǎn)在AB邊上運(yùn)動(dòng)時(shí),如圖(2)
∵∠MPB=∠MBH,
∴PM=BM,
∵M(jìn)H⊥PB,
∴PH=HB=2,
∴PA=AH-PH=1,
∴t=
∵AB∥OC,
∴∠PAQ=∠OCQ,
∵∠AQP=∠CQO,
∴△AQP∽△CQO,
==,
在Rt△AEC中,AC===4,
∴AQ=,QC=,
在Rt△OHB中,OB===2,
∵AC⊥OB,OK=KB,AK=CK,
∴OK=,AK=KC=2,
∴QK=AK-AQ=,
∴tan∠OQC==
當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),如圖(3),
∵∠BHM=∠PBM=90°,∠MPB=∠MBH,
∴tan∠MPB=tan∠MBH,
=,即=
∴BP=,
∴t=,
∴PC=BC-BP=5-
由PC∥OA,同理可證△PQC∽△OQA,
=,
=,
CQ=AC=,
∴QK=KC-CQ=
∵OK=,
∴tan∠OQK=
綜上所述,當(dāng)t=時(shí),∠MPB與∠BCO互為余角,直線OP與直線AC所夾銳角的正切值為
當(dāng)t=時(shí),∠MPB與∠BCO互為余角,直線OP與直線AC所夾銳角的正切值為1.
分析:(1)已知A點(diǎn)的坐標(biāo),就可以求出OA的長(zhǎng),根據(jù)OA=OC,就可以得到C點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法就可以求出函數(shù)解析式.
(2)點(diǎn)P的位置應(yīng)分P在AB和BC上,兩種情況進(jìn)行討論.當(dāng)P在AB上時(shí),△PMB的底邊PB可以用時(shí)間t表示出來,高是MH的長(zhǎng),因而面積就可以表示出來.
(3)本題可以分兩種情況進(jìn)行討論,當(dāng)P點(diǎn)在AB邊上運(yùn)動(dòng)時(shí):設(shè)OP與AC相交于點(diǎn)Q連接OB交AC于點(diǎn)K,證明△AQP∽△CQO,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,以及勾股定理可以求出AQ,QC的長(zhǎng),在直角△OHB中,根據(jù)勾股定理,可以得到tan∠OQC.
當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),可證△BHM∽△PBM和△PQC∽△OQA,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,就可以求出OK,KQ就可以求出.
點(diǎn)評(píng):本題主要考查了利用待定系數(shù)法求函數(shù)的解析式,求三角函數(shù)值的問題可以轉(zhuǎn)化為求直角三角形的邊的比的問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案