6、(1)比較大小
①cos47°48′
cos 39°6′;
②tan 24°7′
tan 25°7′;
③sin 42.7°
sin 52.9°.
(2)銳角a、β滿足
①sina=0.476,sinβ=0.504 3,則a
β.
②cosa=0.437 6,cosβ=0.394 3,a
β.
分析:根據(jù)余弦函數(shù),函數(shù)值隨角度的增大而減;正弦函數(shù),函數(shù)值隨角度的增大而增大,即可作出判斷.
解答:解:(1)①cos47°48′<cos 39°6′;
②tan 24°7′<tan 25°7′;
③sin 42.7°<sin 52.9°;

(2)銳角a、β滿足①sina=0.476,sinβ=0.504 3,則a<β.
②cosa=0.437 6,cosβ=0.394 3,a>β
故答案是:<、<、<、<、>.
點評:本題主要考查了三角函數(shù)的增減性,是需要熟記的內(nèi)容.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,將矩形OABC沿AE折疊,使點O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=
S四邊形CFGH
S四邊形CMNO
,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=
1
3
,Q為AE上一點且QF=
2
3
,拋物線y=mx2+bx+c經(jīng)過C、Q兩點,請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點P,試問在直線BC上是否存在點K,使得以P、B、K為頂點的三角形與△AEF相似?若存在,請求直線KP與y軸的交點T的坐標;若不存在,請說明精英家教網(wǎng)理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠B的平分線BE與CD的延長線交于點E.
(1)作出∠C的平分線CO交BE于點O.(要求尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)試比較BO與EO的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖所示,將矩形OABC沿AE折疊,使點O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點,請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點P,試問在直線BC上是否存在點K,使得以P、B、K為頂點的三角形與△AEF相似?若存在,請求直線KP與y軸的交點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,將矩形OABC沿AE折疊,使點O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點,請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點P,試問在直線BC上是否存在點K,使得以P、B、K為頂點的三角形與△AEF相似?若存在,請求直線KP與y軸的交點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》常考題集(23):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,將矩形OABC沿AE折疊,使點O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點,請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點P,試問在直線BC上是否存在點K,使得以P、B、K為頂點的三角形與△AEF相似?若存在,請求直線KP與y軸的交點T的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案