如圖在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示點(diǎn)B在拋物線(xiàn)y=ax2+ax-2上.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線(xiàn)的解析式;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°到達(dá)△AB′C′的位置,請(qǐng)寫(xiě)出點(diǎn)B′坐標(biāo)
(1,-1)
(1,-1)
,點(diǎn)C′坐標(biāo)
(2,1)
(2,1)
;判斷點(diǎn)B′
,C′
(填“在”或“不”)在(2)中的拋物線(xiàn)上.
分析:(1)根據(jù)題意,過(guò)點(diǎn)B作BD⊥x軸,垂足為D;根據(jù)角的互余的關(guān)系,易得B到x、y軸的距離,即B的坐標(biāo);
(2)根據(jù)拋物線(xiàn)過(guò)B點(diǎn)的坐標(biāo),可得a的值,進(jìn)而可得其解析式;
(3)本題的關(guān)鍵是求出B′,C′兩點(diǎn)的坐標(biāo).過(guò)點(diǎn)B′作B′M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,過(guò)點(diǎn)C″作C″P⊥y軸于點(diǎn)P.然后仿照(1)中求坐標(biāo)時(shí)的方法,通過(guò)證Rt△AB′M≌Rt△BAN來(lái)得出B′的坐標(biāo).同理可得出C′的坐標(biāo).然后將兩點(diǎn)的坐標(biāo)分別代入拋物線(xiàn)的解析式中,進(jìn)而可判斷出兩點(diǎn)是否在拋物線(xiàn)上.
解答:解:(1)過(guò)點(diǎn)B作BD⊥x軸,垂足為D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∴BD=OC=1,CD=OA=2,
∴點(diǎn)B的坐標(biāo)為(-3,1);

(2)∵拋物線(xiàn)y=ax2+ax-2經(jīng)過(guò)點(diǎn)B(-3,1),
∴1=9a-3a-2,解得a=
1
2

∴拋物線(xiàn)的解析式為:y=
1
2
x2+
1
2
x-2;

(3)如圖,過(guò)點(diǎn)B′作B′M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,過(guò)點(diǎn)C″作C″P⊥y軸于點(diǎn)P,
在Rt△AB′M與Rt△BAN中,
∵∠AMB'=∠ANB=90°,∠AB′M=∠BAN=90°-∠B′AM,
∴∠ABN=∠B′AM,
在Rt△AB′M與Rt△BAN.
∠AB′M=∠BAN
AB=AB′
∠ABN=∠B′AM
,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點(diǎn)C′(2,1);
將點(diǎn)B′、C′的坐標(biāo)代入y=x2+x-2,可知點(diǎn)B′、C′在拋物線(xiàn)上.
故答案為:(1,-1),(2,1),在,在.
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,重點(diǎn)考查的是待定系數(shù)法求二次函數(shù)解析式、三角形全等、圖形旋轉(zhuǎn)變換等重要知識(shí)點(diǎn);綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖在平面直角坐標(biāo)系中,△AOB的頂點(diǎn)分別為A(2,0),O(0,0),B(0,4).
①△AOC與△AOB關(guān)于x軸成軸對(duì)稱(chēng),則C點(diǎn)坐標(biāo)為
(0,-4)
;
②將△AOB繞AB的中點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得△EGF,則點(diǎn)A的對(duì)應(yīng)點(diǎn)E的坐標(biāo)為
(3,3)
;
③在圖中畫(huà)出△AOC和△EGF,△AOB與△EGF重疊的面積為
1
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,0),以點(diǎn)A為圓心,2為半徑的圓與x軸交于O,B兩點(diǎn),C為⊙A上一點(diǎn),P是x軸上的一點(diǎn),連接CP,將⊙A向上平移1個(gè)單位長(zhǎng)度,⊙A與x軸交于M、N,與y軸相切于點(diǎn)G,且CP與⊙A相切于點(diǎn)C,∠CAP=60°.請(qǐng)你求出平移后MN和PO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,M為x軸上一點(diǎn),⊙M交x軸于A(yíng)、B兩點(diǎn),交y軸于C、D兩點(diǎn),P為
BC
上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C點(diǎn)坐標(biāo);
(2)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),線(xiàn)段AQ的長(zhǎng)是否改變?若不變,請(qǐng)求出其長(zhǎng)度;若改變,請(qǐng)說(shuō)明理由.(提示:連接AC).
(3)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),是否存在這樣的點(diǎn)P,使CQ所在直線(xiàn)經(jīng)過(guò)點(diǎn)M?若存在請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線(xiàn)段AB的中點(diǎn).請(qǐng)問(wèn)在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案