如圖,在△ABC中,已知∠C=90°,BC=6,AC=8,則它的內(nèi)切圓半徑是   

【答案】分析:根據(jù)勾股定理求出AB,根據(jù)圓O是直角三角形ABC的內(nèi)切圓,推出OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,證四邊形ODCE是正方形,推出CE=CD=r,根據(jù)切線長(zhǎng)定理得到AC-r+BC-r=AB,代入求出即可.
解答:解:根據(jù)勾股定理得:AB==10,
設(shè)三角形ABC的內(nèi)切圓O的半徑是r,
∵圓O是直角三角形ABC的內(nèi)切圓,
∴OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,
∴四邊形ODCE是正方形,
∴OD=OE=CD=CE=r,
∴AC-r+BC-r=AB,
8-r+6-r=10,
∴r=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查對(duì)切線長(zhǎng)定理,三角形的內(nèi)切圓與內(nèi)心,勾股定理,正方形的性質(zhì)和判定等知識(shí)點(diǎn)的理解和掌握,能推出AC-r+BC-r=AB是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案