分解因式:3a3﹣12a2+12a= .
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線l和雙曲線(k>0)交于A、B兩點,P是線段AB上的點(不與A、B重合),過點A、B、P分別向x軸作垂線,垂足分別是C、D、E,連接OA、OB、OP,設(shè)△AOC面積是S1,△BOD面積是S2,△POE面積是S3,則( 。
A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線y=x2+bx﹣2的圖象經(jīng)過C點.
(1)求拋物線的解析式;
(2)平移該拋物線的對稱軸所在直線l.當l移動到何處時,恰好將△ABC的面積分為相等的兩部分?
(3)點P是拋物線上一動點,是否存在點P,使四邊形PACB為平行四邊形?若存在,求出P點坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
情境觀察:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.
①寫出圖1中所有的全等三角形 ;
②線段AF與線段CE的數(shù)量關(guān)系是 .
問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.
求證:AE=2CD.
拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.求證:DF=2CE.
要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點M,P,CD交BE于點Q,連接PQ,下面結(jié)論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④PQ∥AC.
其中結(jié)論正確的有( 。
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com