【題目】如圖,等邊 ABC 的邊長是 2 , D 、 E 分別為 AB 、 AC 的中點(diǎn),連接CD ,過 E 點(diǎn)作 EF // DC BC 的延長線于點(diǎn) F

(1) 求證:四邊形 CDEF 是平行四邊形;

(2)求四邊形 CDEF 的周長

【答案】(1)見解析;(2)2+2.

【解析】

1)直接利用三角形中位線定理得出DEBC,再利用平行四邊形的判定方法得出答案;
2)利用等邊三角形的性質(zhì)結(jié)合平行四邊形的性質(zhì)得出DC=EF,進(jìn)而求出答案.

(1)證明:∵DE分別是AB,AC中點(diǎn),

DEBC,DE=BC=1

EF // DC

∴四邊形CDEF是平行四邊形,

(2)∵四邊形DEFC是平行四邊形,

DC=EF,DE=CF

DAB的中點(diǎn),等邊ABC的邊長是2,

AD=BD=1,CDAB,BC=2,

DC=EF=

∴四邊形CDEF的周長是2+2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1,P2,P3,…,P2011

在反比例函數(shù)圖象上,它們的橫坐標(biāo)分別是x1,x2x3,…,x2011,縱坐標(biāo)分別是1,3,5,…,共2011個連續(xù)奇數(shù),過點(diǎn)P1,P2,P3,…,P2011分別作y軸的平行線,與的圖象交點(diǎn)依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2011,y2011),則y2011=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一紙板的形狀為正方形ABCD如圖所示.其邊長為10厘米,AD、BC與投影面β平行,AB、CD與投影面不平行,正方形在投影面β上的正投影為A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,對角線AC、BD相交于點(diǎn)O,點(diǎn)E是線段BO上的一個動點(diǎn)(可以與O、B重合),點(diǎn)F為射線DC上一點(diǎn),∠ABC=60,∠AEF=120AB=5,則EF的取值范圍是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB于點(diǎn)E,且CD=24,點(diǎn)M⊙O上,MD經(jīng)過圓心O,聯(lián)結(jié)MB

1)若BE=8,求⊙O的半徑;

2)若∠DMB=∠D,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線CBOA,∠C=A=112°,E,FCB上,且滿足∠FOB=AOB,DE平分∠COF

(1)求∠EOB的度數(shù);

(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場經(jīng)銷龜苓膏粉,其中品牌的批發(fā)價是每包20元,品牌的批發(fā)價是每包25元,小明計劃購買這兩種品牌的龜苓膏粉共1000包,解答下列問題:

1)若購買這些龜苓膏粉共花費(fèi)22000元,求兩種品牌的龜苓膏粉各購買了多少包?

2)若憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費(fèi)用為500元,

若購買會員卡并用此卡購買這些龜苓膏粉共花費(fèi)元,設(shè)品牌購買了包,請求出之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=2x-2的圖像與反比例函數(shù)y= 的圖像交于點(diǎn)M(2,a)與Nb,-4)兩點(diǎn)。

(1)求反比例函數(shù)的解析式.

(2)畫出草圖,根據(jù)圖像寫出反比例函數(shù)的值大于一次函數(shù)的值時的x的取值范圍.

(3)求△MON的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展課外體育活動,決定開展:籃球、乒乓球、踢毽子、跑步四種活動項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種).隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如下統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.

(1)樣本中最喜歡籃球項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是 度;

(2)請把條形統(tǒng)計圖補(bǔ)充完整;

(3)若該校有學(xué)生1000人,請根據(jù)樣本估計全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?

查看答案和解析>>

同步練習(xí)冊答案