如圖,正方形ABCD中,E是AD邊上一點(diǎn),且BE=CE,BE與對(duì)角線AC交于點(diǎn)F,連接DF,交EC于點(diǎn)G.
(1)求證:∠ABF=∠ADF;
(2)求證:DF⊥EC.

【答案】分析:(1)根據(jù)正方形的性質(zhì)及SAS定理可求出△DAF≌△BAF,再根據(jù)相似三角形的性質(zhì)即可解答;
(2)先根據(jù)HL定理求出△DAF≌△BAF,∠AEB=∠DEC,再根據(jù)(1)的結(jié)論可求出∠ADF+∠DEC=90°,即DF⊥EC.
解答:證明:(1)∵四邊形ABCD為正方形,
∠BAC=∠DAC,AB=AD,
又∵AF=AF,
∴△DAF≌△BAF,
∴∠ADF=∠ABF;

(2)Rt△ABE和Rt△CDE中,
BE=CE,AB=CD,
Rt△ABE≌Rt△CDE,
∠AEB=∠DEC,
由(1)知,
∠ABE=∠ADF,
∠ABE+∠AEB=90°,
∠ADF+∠DEC=90°,
∠DGE=180°-90°=90°,
DF⊥EC.
點(diǎn)評(píng):本題考查的是正方形的性質(zhì)及全等三角形的判定定理及性質(zhì),注意在正方形中的特殊三角形的應(yīng)用,判斷直角三角形全等的HL定理,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案