A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=$\frac{1}{2}$FB•FG=$\frac{1}{2}$S四邊形CBFG,②正確;
由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應(yīng)邊成比例,得出D•FE=AD2=FQ•AC,④正確.
解答 解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,$\left\{\begin{array}{l}{∠G=∠C}&{\;}\\{∠AFG=∠CAD}&{\;}\\{AF=AD}&{\;}\end{array}\right.$,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,F(xiàn)G⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,
∴∠CBF=90°,S△FAB=$\frac{1}{2}$FB•FG=$\frac{1}{2}$S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD•FE=AD2=FQ•AC,④正確;
故選:D.
點評 本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | 2+$\sqrt{3}$或2-$\sqrt{3}$ | D. | 4+2$\sqrt{3}$或2-$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{5π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com