如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在y軸正半軸上.點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F.
(1)若△OAE、△OCF的面積分別為S1、S2.且S1+S2=2,求k的值;
(2)若OA=2.0C=4.問當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí).四邊形OAEF的面積最大.其最大值為多少?

【答案】分析:(1)設(shè)E(x1,),F(xiàn)(x2,),x1>0,x2>0,根據(jù)三角形的面積公式得到S1=S2=k,利用S1+S2=2即可求出k;
(2)設(shè),,利用S四邊形OAEF=S矩形OABC-S△BEF-S△OCF=-+5,根據(jù)二次函數(shù)的最值問題即可得到當(dāng)k=4時(shí),四邊形OAEF的面積有最大值,S四邊形OAEF=5,此時(shí)AE=2.
解答:解:(1)∵點(diǎn)E、F在函數(shù)y=(x>0)的圖象上,
∴設(shè)E(x1,),F(xiàn)(x2,),x1>0,x2>0,
∴S1=,S2=,
∵S1+S2=2,
=2,
∴k=2;

(2)∵四邊形OABC為矩形,OA=2,OC=4,
設(shè),,
∴BE=4-,BF=2-,
∴S△BEF=-k+4,
∵S△OCF=,S矩形OABC=2×4=8,
∴S四邊形OAEF=S矩形OABC-S△BEF-S△OCF=+4,
=-+5,
∴當(dāng)k=4時(shí),S四邊形OAEF=5,
∴AE=2.
當(dāng)點(diǎn)E運(yùn)動(dòng)到AB的中點(diǎn)時(shí),四邊形OAEF的面積最大,最大值是5.
點(diǎn)評:本題考查了反比例函數(shù)k的幾何含義和點(diǎn)在雙曲線上,點(diǎn)的橫縱坐標(biāo)滿足反比例的解析式.也考查了二次的頂點(diǎn)式及其最值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系中矩形OABC如圖,且A(6,0)、C(0,10),P點(diǎn)從C出發(fā)沿折線COA勻速運(yùn)動(dòng)、Q點(diǎn)從O出發(fā)沿折線OAB勻速運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā)運(yùn)動(dòng)t秒,且速度均為每秒2個(gè)單位長度,設(shè)S△OPQ=S.
(1)已知直線y=mx+m-2平分矩形OABC面積,求m的值;(經(jīng)驗(yàn)之談:過對稱中心的任意一條直線均可將中心對稱圖形分成面積相等的兩部分.)
(2)當(dāng)P點(diǎn)在CO上、Q點(diǎn)在OA上時(shí),t為何值有S=12?
(3)求在此運(yùn)動(dòng)過程中S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•巴中)①如圖1,在每個(gè)小方格都是邊長為1個(gè)單位長度的正方形方格紙中有△OAB,請將△OAB繞O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA′B′.
②折紙:有一張矩形紙片ABCD如圖2,要將點(diǎn)D沿某條直線翻轉(zhuǎn)180°,恰好落在BC邊上的點(diǎn)D′處,請?jiān)趫D中作出該直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(帶解析) 題型:解答題

①如圖1,在每個(gè)小方格都是邊長為1個(gè)單位長度的正方形方格紙中有△OAB,
請將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA’B’;
②折紙:有一張矩形紙片ABCD(如圖2),要將點(diǎn)D沿某條直線翻折180°,恰好落在BC邊上的點(diǎn)D’
處,,請?jiān)趫D中作出該直線。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

①如圖1,在每個(gè)小方格都是邊長為1個(gè)單位長度的正方形方格紙中有△OAB,

請將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA’B’;

②折紙:有一張矩形紙片ABCD(如圖2),要將點(diǎn)D沿某條直線翻折180°,恰好落在BC邊上的點(diǎn)D’

處,,請?jiān)趫D中作出該直線。

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省九年級上學(xué)期期中考試數(shù)學(xué)卷(A) 題型:解答題

已知:在平面直角坐標(biāo)系中矩形OABC如圖,且A (6,0)、C(0,10),P點(diǎn)從C出發(fā)沿折線COA勻速運(yùn)動(dòng)、Q點(diǎn)從O出發(fā)沿折線OAB勻速運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā)運(yùn)動(dòng)秒,且速度均為每秒2個(gè)單位長度,設(shè).

1.已知直線平分矩形OABC面積,求的值;(經(jīng)驗(yàn)之談:過對稱中心的任意一條直線均可將中心對稱圖形分成面積相等的兩部分.)

2.當(dāng)P點(diǎn)在CO上、Q點(diǎn)在OA上時(shí),為何值有S=12.?

3.求在此運(yùn)動(dòng)過程中S與的函數(shù)關(guān)系式.

 

查看答案和解析>>

同步練習(xí)冊答案