中踏銷售某種商品,每件進(jìn)價(jià)為10元,在銷售過程中發(fā)現(xiàn),平均每天的銷售量y(件)與銷售價(jià)x(元/件)之間的關(guān)系可近似的看做一次函數(shù):y=-2x+60;
(1)求中踏平均每天銷售這種商品的利潤w(元)與銷售價(jià)x之間的函數(shù)關(guān)系式;
(2)當(dāng)這種商品的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?

解:(1)由題意得出:
w=(x-10)×y,
=(x-10)•(-2x+60)
=-2x2+80x-600;

(2)∵w=-2x2+80x-600,
∴當(dāng)x=-=20時(shí),w最大=-2×202+80×20-600=200(元).
答:當(dāng)這種商品的銷售價(jià)為20元時(shí),可以獲得最大利潤,最大利潤是200元.
分析:(1)由題意得,每天銷售量與銷售單價(jià)之間的關(guān)系可近似看作一次函數(shù),利潤=(定價(jià)-進(jìn)價(jià))×銷售量,從而列出關(guān)系式;
(2)根據(jù)公式,求出x=20時(shí)W最大,進(jìn)而得出答案.
點(diǎn)評:此題考查了二次函數(shù)的性質(zhì)及其應(yīng)用,將實(shí)際問題轉(zhuǎn)化為求函數(shù)最值問題,從而來解決實(shí)際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案