(2013•寶應(yīng)縣模擬)在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間的對應(yīng)關(guān)系如圖所示:
(1)試判斷y與x 之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤w(元)與銷售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式;
(3)在(2)的前提下,若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大的利潤,試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤.
分析:(1)觀察可得該函數(shù)圖象是一次函數(shù),設(shè)出一次函數(shù)解析式,把其中兩點(diǎn)代入即可求得該函數(shù)解析式,進(jìn)而把其余兩點(diǎn)的橫坐標(biāo)代入看縱坐標(biāo)是否與點(diǎn)的縱坐標(biāo)相同;
(2)銷售利潤=每個(gè)許愿瓶的利潤×銷售量;
(3)根據(jù)進(jìn)貨成本可得自變量的取值,結(jié)合二次函數(shù)的關(guān)系式即可求得相應(yīng)的最大利潤.
解答:解:(1)y是x的一次函數(shù),設(shè)y=kx+b圖象過點(diǎn)(10,300),(12,240),
10k+b=300
12k+b=240
,
解得
k=-30
b=600

故y與x 之間的函數(shù)關(guān)系為:y=-30x+600,
當(dāng)x=14時(shí),y=180;當(dāng)x=16時(shí),y=120,
即點(diǎn)(14,180),(16,120)均在函數(shù)y=-30x+600的圖象上.
∴y與x之間的函數(shù)關(guān)系式為y=-30x+600;

(2)w=(x-6)(-30x+600)=-30x2+780x-3600
即w與x之間的函數(shù)關(guān)系式為w=-30x2+780x-3600;

(3)由題意得6(-30x+600)≤900,解得x≥15.
w=-30x2+780x-3600圖象對稱軸為x=-
780
2×(-30)
=13,
∵a=-30<0,
∴拋物線開口向下,當(dāng)x≥15時(shí),w隨x增大而減小,
∴當(dāng)x=15時(shí),w最大=1350.
即以15元/個(gè)的價(jià)格銷售這批許愿瓶可獲得最大利潤1350元.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的應(yīng)用;注意結(jié)合自變量的取值求得二次函數(shù)的最值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)在Rt△ABC中,∠C=90°,AB=10,AC=8,則cosA=
4
5
4
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣二模)在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,O為AB上一點(diǎn),OA=
154
,以O(shè)為圓心,OA為半徑作圓.
(1)試判斷⊙O與BC的位置關(guān)系,并說明理由;
(2)若⊙O與AC交于點(diǎn)另一點(diǎn)D,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)下列計(jì)算中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)小軍的期末總評(píng)成績由平時(shí)、期中、期末成績按權(quán)重比1:1:8 組成,現(xiàn)小軍平時(shí)考試得90分,期中考試得60分,要使他的總評(píng)成績不低于79分,那么小軍的期末考試成績x滿足的條件是
80
80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)如圖,在平行四邊形ABDC中,點(diǎn)M是CD的中點(diǎn),AM與BC相交于點(diǎn)N,那么S△ACN:S四邊形BDMN等于
2:5
2:5

查看答案和解析>>

同步練習(xí)冊答案