【題目】下列說法中,正確的個(gè)數(shù)為(  )

①三角形的三條高都在三角形內(nèi),且都相交于一點(diǎn)

②三角形的中線都是過三角形的某一個(gè)頂點(diǎn),且平分對(duì)邊的直線

③在ABC,,ABC是直角三角形

④一個(gè)三角形的兩邊長分別是810,那么它的最短邊的取值范圍是2b18.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】A

【解析】

根據(jù)三角形的高線、中線、三角形內(nèi)角和定理、三角形的三邊關(guān)系分別分析各個(gè)選項(xiàng)即可.

①只有當(dāng)三角形是銳角三角形時(shí),三條高才在三角形的內(nèi)部,故此選項(xiàng)錯(cuò)誤;

②三角形中線是過頂點(diǎn)平分對(duì)邊的線段,故此選項(xiàng)錯(cuò)誤;

③設(shè)∠A=x,則∠B=2x,∠C=3x

∵∠A+B+C=180°,∴x+2x+3x=180°,解得:x=30°,∴∠C=3x=90°,故此選項(xiàng)正確;

④一個(gè)三角形的兩邊長分別是810,那么它的最短邊的取值范圍是2b8,故此選項(xiàng)錯(cuò)誤.

故正確的有1個(gè).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一個(gè)關(guān)于的代數(shù)式,若存在一個(gè)系數(shù)為正數(shù)關(guān)于的單項(xiàng)式,使 的結(jié)果是所有系數(shù)均為整數(shù)的整式,則稱單項(xiàng)式為代數(shù)式的“整系單項(xiàng)式” ,例如:

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

顯然,當(dāng)代數(shù)式存在整系單項(xiàng)式時(shí),有無數(shù)個(gè),現(xiàn)把次數(shù)最低,系數(shù)最小的整系單項(xiàng)式記為 ,例如: .

閱讀以上材料并解決下列問題:

.判斷:當(dāng) 時(shí), 的整系單項(xiàng)式(填“是”或“不是”);

.當(dāng) 時(shí), = ;

.解方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=∠DCB,添加一個(gè)條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是(  )

A. A=∠D B. ABDC C. ACDB D. OBOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘在南北航線上的測(cè)量船,于A點(diǎn)處測(cè)得海島B在點(diǎn)A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點(diǎn)時(shí),測(cè)得海島BC點(diǎn)的北偏東15°方向,那么海島B離此航線的最近距離是(  )(結(jié)果保留小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):≈1.732,≈1.414)

A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠DAB,CEABEAB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+DCB=180°;③CD=CB;④SACE2SBCE=SADC;其中正確結(jié)論的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔABC中,AD是高,AE、BF是角平分線,它們相交與點(diǎn)O,∠BAC=50°,∠C=70°,則∠DAC的度數(shù)為__________,∠BOA的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊直角三角板DEF放置在銳角ABC上,使得該三角板的兩條直角邊DE、DF恰好分別經(jīng)過點(diǎn)BC

1)如圖①,若∠A=40°時(shí),點(diǎn)DABC內(nèi),則∠ABC+ACB=   度,∠DBC+DCB=   度,∠ABD+ACD=   度;

2)如圖②,改變直角三角板DEF的位置,使點(diǎn)DABC內(nèi),請(qǐng)?zhí)骄俊?/span>ABD+ACD與∠A之間存在怎樣的數(shù)量關(guān)系,并驗(yàn)證你的結(jié)論.

3)如圖③,改變直角三角板DEF的位置,使點(diǎn)DABC外,且在AB邊的左側(cè),直接寫出∠ABD、∠ACD、∠A三者之間存在的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠BAC=60°,半徑長1的⊙O與∠BAC的兩邊相切,P為⊙O上一動(dòng)點(diǎn),以P為圓心,PA長為半徑的⊙P交射線AB、ACD、E兩點(diǎn),連接DE,則線段DE長度的最大值為( 。

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在線段BG上,正方形ABCD和正方形DEFG的面積分別為37,則CDE的面積為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案