已知:△ABD和△CBD關(guān)于直線BD對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)C),點(diǎn)E、F分別是線段BC和線段BD上的點(diǎn),且點(diǎn)F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點(diǎn)G.

(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時(shí),M是線段AG上一點(diǎn),連接BM、ED、MF,MF的延長(zhǎng)線交ED于點(diǎn)N,∠MBF= ∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連接DE,設(shè)M為DE的中點(diǎn).
(1)說(shuō)明:MB=MC;
(2)設(shè)∠BAD=∠CAE,固定△ABD,讓Rt△ACE繞頂點(diǎn)A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問(wèn):MB=MC是否還能成立?并證明其結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•哈爾濱)已知:△ABD和△CBD關(guān)于直線BD對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)C),點(diǎn)E,F(xiàn)分別是線段BC和線段BD上的點(diǎn),且點(diǎn)F在線段EC的垂直平分線上,連接AF,AE,AE交BD于點(diǎn)G.
(1)如圖1,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時(shí),M是線段AG上一點(diǎn),連接BM,ED,MF,MF的延長(zhǎng)線交ED于點(diǎn)N,∠MBF=
1
2
∠BAF,AF=
2
3
AD,試探究FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
(1)如圖1,試說(shuō)明:△ABD≌△AEC;
(2)如圖1,若∠CAD=35°,∠E=56°,∠D=40°,
①試求:∠EOB的度數(shù);
②將△AEC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α度(0°<α<180°),問(wèn)當(dāng)α為多少度時(shí),直線CE分別與△ABD的三邊所在的直線垂直?(請(qǐng)直接寫出答案).
(3)如圖2將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)后得到△ABD,并使點(diǎn)D,E,A三點(diǎn)在同一條直線上,若AD=2AB,連接CD,若△CDE的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請(qǐng)求出來(lái);若不能,請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,已知在△ABD和△AEC中,,,
【小題1】如圖1,試說(shuō)明:;
【小題2】如圖1,若,,
①試求:的度數(shù)
②將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)度(),問(wèn)當(dāng)為多少度時(shí),直線CE分別與的三邊所在的直線垂直?(請(qǐng)直接寫出答案)。
【小題3】如圖2將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到,并使點(diǎn)D,E,A三點(diǎn)在同一條直線上,若,連接CD,若的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請(qǐng)求出來(lái);若不能,請(qǐng)你說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案