如果,那么=  ▲  
9
由題干可得x=y,將其代入要求的式子即可得出答案.
解:∵=,
∴x=y,
=9.
故答案為:9.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分,其中第(1)、(2)小題各4分,第(3)小題6分)已知:如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖像經(jīng)過點A(-1,1)和點B(2,2),該函數(shù)圖像的對稱軸與直線OA、OB分別交于點C和點D

小題1:(1)求這個二次函數(shù)的解析式和它的對稱軸;
小題2:(2)求證:∠ABO=∠CBO
小題3:(3)如果點P在直線AB上,且△POB
與△BCD相似,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線軸交于點D(0,3).

小題1:直接寫出的值;
小題2:若拋物線與軸交于A、B兩點(點B在點A的右邊),頂點為C點,求直線BC的解析式;
小題3:已知點P是直線BC上一個動點,
①當(dāng)點P在線段BC上運動時(點P不與B、C重合),過點P作PE⊥軸,垂足為E,連結(jié)BE.設(shè)點P的坐標(biāo)為(),△PBE的面積為,求的函數(shù)關(guān)系式,寫出自變量的取值范圍,并求出的最大值;
②試探索:在直線BC上是否存在著點P,使得以點P為圓心,半徑為的⊙P,既與拋物線的對稱軸相切,又與以點C為圓心,半徑為1的⊙C相切?如果存在,試求的值,并直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖,在平面直角坐標(biāo)系中,以P (4,6)為位似中心,把△ABC縮小得到△DEF,若變換后,點AB的對應(yīng)點分別為點D、E,則點C的對應(yīng)點F的坐標(biāo)應(yīng)為(   ).
A.(4,2)B.(4,4)C.(4,5)D.(5,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC∽△A′B′C′,AB=3,A′B′=4.若SABC=18,則SABC的值為( 。
A.B.C.24D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
如圖,中,,,點的中點,相交于點

小題1:(1)求的值;(5分)
小題2:(2)如果,,請用、表示   (5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的平分線,以AB上一點O為圓心,AD為弦作⊙O
小題1:(1)求證:BC為⊙O的切線;  
小題2: (2)若AC= 6,tanB=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題8分)如圖,AB為⊙O的直徑,割線PCD交⊙O于C、D, .

小題1:(1)求證:PA是⊙O的切線;
小題2:(2)若PA=6,CD=3PC,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,過點A作GE∥BC,角平分線BD、CF相交于點H,它們的延長線分別交GE于點E、G.試在圖中找出3對全等三角形,并對其中一對全等三角形給出證明.

查看答案和解析>>

同步練習(xí)冊答案