【題目】(1)方法回顧
在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:
第一步添加輔助線:如圖1,在△ABC中,延長(zhǎng)DE (D、E分別是AB、AC的中點(diǎn))到點(diǎn)F,使得EF=DE,連接CF;
第二步證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到DE∥BC,DE=BC.
(2)問(wèn)題解決
如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長(zhǎng).
(3)拓展研究
如圖3,在四邊形ABCD中,∠A=100°,∠D=110°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=4,DF=,∠GEF=90°,求GF的長(zhǎng).
【答案】問(wèn)題解決:GF=5;拓展研究:GF=.
【解析】
(1)延長(zhǎng)GE、FD交于點(diǎn)H,可證得△AEG≌△DEH,結(jié)合條件可證明EF垂直平分GH,可得GF=FH,可求得GF的長(zhǎng);
(2)過(guò)點(diǎn)D作AB的平行線交GE的延長(zhǎng)線于點(diǎn)H,過(guò)H作CD的垂線,垂足為P,連接HF,可證明△AEG≌△DEH,結(jié)合條件可得到△HPD為等腰直角三角形,可求得PF的長(zhǎng),在Rt△HFP中,可求得HF,則可求得GF的長(zhǎng).
(1)如圖2,延長(zhǎng)GE、FD交于點(diǎn)H,
∵E為AD中點(diǎn),
∴EA=ED,且∠A=∠EDH=90°,
在△AEG和△DEH中,
∴△AEG≌△DEH(ASA),
∴AG=HD=2,EG=EH,
∵∠GEF=90°,
∴EF垂直平分GH,
∴GF=HF=DH+DF=2+3=5;
(2)如圖3,過(guò)點(diǎn)D作AB的平行線交GE的延長(zhǎng)線于點(diǎn)H,過(guò)H作CD的垂線,垂足為P,連接HF,
同(1)可知△AEG≌△DEH,GF=HF,
∴∠A=∠HDE=100°,AG=HD=4,
∵∠ADC=110°,
∴∠HDF=360°﹣100°﹣110°=150°,
∴∠HDP=30°,∴HP=2,
PD=PH=,
∴PF=PD+DF=
在Rt△HFP中,∠HPF=90°,HP=2,PF=,
∴HF==,
∴GF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若EA=EG,求證:ED=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=1,AD=2,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,點(diǎn)A落在A′處,如果A′恰在矩形的對(duì)稱(chēng)軸上,則AE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有小正方形的邊長(zhǎng)都為1個(gè)單位,A、B、C均在格點(diǎn)上.
(1)過(guò)點(diǎn)C畫(huà)線段AB的平行線CD;
(2)過(guò)點(diǎn)A畫(huà)線段BC的垂線,垂足為E;
(3)線段AE的長(zhǎng)度是點(diǎn) 到直線 的距離;
(4)比較線段AE、AB、BC的大小關(guān)系(用“<”連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(認(rèn)識(shí)概念)
點(diǎn)P、Q分別是兩個(gè)圖形G1、G2上的任意一點(diǎn),當(dāng)P、Q兩點(diǎn)之間的距離最小時(shí),我們把這個(gè)最小距離叫作圖形G1、G2的親密距離,記為d(G1,G2).例如,如果點(diǎn)M、N分別是兩條相交直線a、b上的任意一點(diǎn),則d(a,b)=0
(初步運(yùn)用)
如圖1,長(zhǎng)方形四個(gè)頂點(diǎn)分別是點(diǎn)A、B、C、D,邊AB=CD=5,AD=BC=3.那么d(AB,CD)=___,d(AD,BC)=_____,d(AD,AB)=_____.
(深入探究)
(1)在圖1中,如果將線段CD沿它所在直線平移(邊AB不動(dòng)),且使d(CD,AB)不變,那么線段CD的中點(diǎn)偏離它原來(lái)位置的最大距離為______;
(2)如圖2,線段AB∥直線CD,AB=1,點(diǎn)A到CD的距離為3,將線段AB繞點(diǎn)A旋轉(zhuǎn)90°后的對(duì)應(yīng)線段為AB′,則d(AB′,CD)=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,BD和CD為⊙O的切線,切點(diǎn)分別為B和C.
(1)求證:AC∥OD;
(2)當(dāng)BC=BD,且BD=6cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,四邊形ABCD為矩形,AB=a,BC=b,點(diǎn)P在矩形ABCD的對(duì)角線AC上,Rt△PEF的兩條直角邊PE,PF分別交BC,DC于點(diǎn)M,N,當(dāng)PM⊥BC,PN⊥CD時(shí), = (用含a,b的代數(shù)式表示).
(2)拓展探究
在(1)中,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),如圖2,的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.
(3)問(wèn)題解決
如圖3,四邊形ABCD為正方形,AB=BC=a,點(diǎn)P在對(duì)角線AC上,M,N分別在BC,CD上,PM⊥PN,當(dāng)AP=nPC時(shí),(n是正實(shí)數(shù)),直接寫(xiě)出四邊形PMCN的面積是 (用含n,a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(a≠0)的對(duì)稱(chēng)軸為直=1,與軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示.下列結(jié)論:① ;②方程=0的兩個(gè)根是,; ③;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)x1<x2<0時(shí),y1<y2.其中結(jié)論正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,以AB為斜邊作等腰直角三角形ABD,且點(diǎn)D與點(diǎn)C在直線AB的兩側(cè),連接CD.
(1)如圖1,若∠ABC=30°,則∠CAD的度數(shù)為________.
(2)已知AC=1,BC=3.
①依題意將圖2補(bǔ)全;
②求CD的長(zhǎng);
(3)用等式表示線段AC,BC,CD之間的數(shù)量關(guān)系(直接寫(xiě)出即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com