如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點坐標(biāo)為O(0,0),A(2
3
,0),B(2
3
,2),把矩形OABC繞點O逆時針方向旋轉(zhuǎn)α度,使點B正好落在y軸正半軸上,得到矩形OA1B1C1
(1)求角α的度數(shù);
(2)求直線A1B1的函數(shù)關(guān)系式,并判斷直線A1B1是否經(jīng)過點B,為什么?
(1)∵A(2
3
,0),B(2
3
,2),
∴A1B1=AB=2,OA=OA1=2
3

∴tan∠A1OB1=A1B1:OA1=2:2
3
=1:
3
,
∴∠A1OB1=30°,
∴α=60°;

(2)在Rt△A1B1O中,B1O=
OA12+A1B12
=4,
∴B1的坐標(biāo)為(0,4),
如圖過A1作A1E⊥OA于E,
∵α=60°,
∴A1E=3,OE=
3
,
∴A(
3
,3),
設(shè)直線A1B1的解析式為y=kx+b,
依題意得
4=b
3=
3
k+b

∴k=-
3
3
,b=4,
∴y=-
3
3
x+4.
而B(2
3
,2),
代入解析式中,左邊=2,右邊=-
3
3
×2
3
+4=2;
左邊=右邊,
∴直線A1B1經(jīng)過點B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠ABC=90°,OA=OB=1,與x軸的正方向夾角為30°.求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在直角坐標(biāo)系中,直線l1為y=3x,點P在直線l1上,經(jīng)過點P和點Q(1,2)的直線為l2,設(shè)在第一象限內(nèi)直線l1、直線l2和x軸圍成的三角形的面積為S,求S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖.在直角坐標(biāo)系中,直線l對應(yīng)的函數(shù)表達(dá)式是( 。
A.y=x-1B.y=x+1C.y=-x-1D.y=-x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

暑假期間,王紅隨爸爸媽媽到一個著名森林風(fēng)景區(qū)旅游,導(dǎo)游提醒大家上山要多帶一件衣服,并介紹山區(qū)氣溫會隨著海拔高度的增加而下降,沿途王紅利用隨身帶的登山表(具有測定當(dāng)前位置的海拔高度和氣溫等功能)測得以下的數(shù)據(jù):
海拔高度x(米)300400500600700
氣溫y(℃)29.228.628.027.426.8
(1)設(shè)海拔高度為x(米),氣溫為y(℃),根據(jù)上表提供的數(shù)據(jù)在下列直角坐標(biāo)系中描點并連線;
(2)觀察(1)中所畫出的圖象,猜想y與x之間函數(shù)關(guān)系,求出所猜想的函數(shù)關(guān)系表達(dá)式;
(3)如果王紅到達(dá)山頂時,只告訴你山頂?shù)臍鉁貫?0.2℃,請計算此風(fēng)景區(qū)山頂海拔高度大約是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某長途客運公司規(guī)定每位旅客可以免費托運一定重量的行李,超過部分則需繳交行李托運費.行李費托運費y(元)與行李重量x(千克)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式;
(2)每位旅客最多可以免費托運多少千克行李?
(3)某旅客行托運行李100千克,應(yīng)交多少行李托運費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

2002年在北京召開的世界數(shù)學(xué)大會會標(biāo)圖案是由四個全等的直角三角形圍成的一個大正方形,中間的陰影部分是一個小正方形的“趙爽弦圖”.若這四個全等的直角三角形有一個角為30°,頂點B1、B2、B3、…、Bn和C1、C2、C3、…、Cn分別在直線y=-
1
2
x+
3
+1
和x軸上,則第n個陰影正方形的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖矩形OABC中,O為直角坐標(biāo)系的原點,A、C兩點的坐標(biāo)分別為(3,0)、(0,5).
(1)直接寫出B點坐標(biāo);
(2)若過點C的直線CD交AB邊于點D,且把矩形OABC的周長分為1:3兩部分,求直線CD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某人計劃購買一套沒有裝修的門市房,它的地面圖形是正方形,若正方形的邊長為x米,則辦理產(chǎn)權(quán)費用需1000x元.裝修費用yl(元)與x(米)的函數(shù)關(guān)系如圖所示.
(1)求yl與x的函數(shù)關(guān)系式;
(2)裝修后將此門市房出租,租期五年,租金以每年每平方米200元計算.
①求五年到期時,由此門市房所獲利潤y(元)與x(米)的函數(shù)關(guān)系式;
②若五年到期時,按計劃他將由此門市房賺取利潤70000元,求此門市房的面積.(利潤=租金-辦理產(chǎn)權(quán)費用與裝修費用之和)

查看答案和解析>>

同步練習(xí)冊答案