【題目】如圖1,平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+4x與x軸交于O、A兩點(diǎn).直線y=kx+m經(jīng)過(guò)拋物線的頂點(diǎn)B及另一點(diǎn)D(D與A不重合),交y軸于點(diǎn)C.
(1)當(dāng)OA=4,OC=3時(shí).
①分別求該拋物線與直線BC相應(yīng)的函數(shù)表達(dá)式;
②連結(jié)AC,分別求出tan∠CAO、tan∠BAC的值,并說(shuō)明∠CAO與∠BAC的大小關(guān)系;
(2)如圖2,過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,連接CE.當(dāng)a為任意負(fù)數(shù)時(shí),試探究AB與CE的位置關(guān)系?
【答案】(1)①y=﹣x2+4x,y=x+3;②∠CAO>∠BAC;(2)AB∥CE,理由見(jiàn)解析.
【解析】
(1)①根據(jù)題意得出A、C的坐標(biāo),由A的坐標(biāo)可求出拋物線解析式及其頂點(diǎn)B坐標(biāo),根據(jù)B、C坐標(biāo)可得直線解析式;
②tan∠CAO=,先根據(jù)勾股定理逆定理判定△ABC是直角三角形,再根據(jù)tan∠BAC=可得答案;
(2)根據(jù)y=ax2+4x求得A(-,0)、B(-,-),先求得tan∠BAO=2,再將B(-,-)代入y=kx+m得m=,據(jù)此知點(diǎn)C(0,),由可求得E(,0),根據(jù)tan∠CEO==2知∠BAO=∠CEO,從而得出答案.
(1)①∵OA=4,OC=3,
∴A(4,0),C(0,3),
將A(4,0)代入y=ax2+4x,得:16a+16=0,
解得a=﹣1,
則y=﹣x2+4x=﹣(x﹣2)2+4,
∴B(2,4),
將B(2,4),C(0,3)代入y=kx+m,得:,
解得,
∴y=x+3;
②tan∠CAO=,
∵AC2=(0﹣4)2+(3﹣0)2=25,BC2=(2﹣0)2+(4﹣3)2=5,AB2=(2﹣4)2+(4﹣0)2=20,
∴AC2=BC2+AB2,且BC=,AB=2,
∴△ABC是直角三角形,其中∠ABC=90°,
則tan∠BAC=,
∵tan∠CAO>tan∠BAC,
∴∠CAO>∠BAC.
(2)AB∥CE,理由如下:
由y=ax2+4x=0得x1=0,x2=﹣,則A(﹣,0),
又y=ax2+4x=a(x+)2﹣,
∴頂點(diǎn)B的坐標(biāo)為(﹣,﹣),
則tan∠BAO=,
將B(﹣,﹣)代入y=kx+m,得:﹣+m=﹣,
解得m=,
∴點(diǎn)C(0,),即OC=,
由得x=﹣或x=,
∴E(,0),
∴OE=,
∴tan∠CEO=,
∴tan∠BAO=tan∠CEO,
∴∠BAO=∠CEO,
∴AB∥CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】華聯(lián)超市用6000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該超市將購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB為⊙O的直徑,BC⊥AB于B,且BC=AB,D為半圓⊙O上的一點(diǎn),連接BD并延長(zhǎng)交半圓⊙O的切線AE于E.
(1)如圖1,若CD=CB,求證:CD是⊙O的切線;
(2)如圖2,若F點(diǎn)在OB上,且CD⊥DF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,E是的中點(diǎn),AE與BC交于點(diǎn)F,∠C=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)已知CD=4,CA=6,
①求CB的長(zhǎng);
②求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹(shù)狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關(guān)系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)我市創(chuàng)建“全國(guó)衛(wèi)生城市”的號(hào)召,某校1500名學(xué)生參加了衛(wèi)生知識(shí)競(jìng)賽,成績(jī)記為A、B、C、D四等,從中隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如圖兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說(shuō)法不正確的是( 。
A. D等所在扇形的圓心角為15°B. 樣本容量是200
C. 樣本中C等所占百分比是10%D. 估計(jì)全校學(xué)生成績(jī)?yōu)?/span>A等大約有900人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1,x2,且x1≠x2,有下列結(jié)論:
①x1=2,x2=3; ②;
③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).
其中,正確結(jié)論的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com