如圖1,點(diǎn)A是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn),連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(1)當(dāng)t=2時(shí),求CF的長;
(2)①當(dāng)t為何值時(shí),點(diǎn)C落在線段BD上;
     ②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時(shí),將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點(diǎn)的四邊形沿C′F′剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合上述條件的點(diǎn)C′的坐標(biāo).

【答案】分析:(1)由Rt△ACF∽R(shí)t△BAO,得CF=OA=t,由此求出CF的值;
(2)①由Rt△ACF∽R(shí)t△BAO,可以求得AF的長度;若點(diǎn)C落在線段BD上,則有△DCF∽△DBO,根據(jù)相似比例式列方程求出t的值;
②有兩種情況,需要分類討論:當(dāng)0<t≤8時(shí),如題圖1所示;當(dāng)t>8時(shí),如答圖1所示.
(3)本問涉及圖形的剪拼.在△CDF沿x軸左右平移的過程中,符合條件的剪拼方法有三種,需要分類討論,分別如答圖2-4所示.
解答:解:(1)由題意,易證Rt△ACF∽R(shí)t△BAO,

∵AB=2AM=2AC,
∴CF=OA=t.
當(dāng)t=2時(shí),CF=1.

(2)①由(1)知,Rt△ACF∽R(shí)t△BAO,

∴AF=OB=2,∴FD=AF=2,.
∵點(diǎn)C落在線段BD上,∴△DCF∽△DBO,
,即,
解得t=-2或t=--2(小于0,舍去)
∴當(dāng)t=-2時(shí),點(diǎn)C落在線段BD上;
②當(dāng)0<t≤8時(shí),如題圖1所示:
S=BE•CE=(t+2)•(4-t)=t2+t+4;
當(dāng)t>8時(shí),如答圖1所示:

S=BE•CE=(t+2)•(t-4)=t2-t-4.

(3)符合條件的點(diǎn)C的坐標(biāo)為:(12,4),(8,4)或(2,4).
理由如下:
在△CDF沿x軸左右平移的過程中,符合條件的剪拼方法有三種:
方法一:如答圖2所示,當(dāng)F′C′=AF′時(shí),點(diǎn)F′的坐標(biāo)為(12,0),

根據(jù)△C′D′F′≌△AHF′,△BC′H為拼成的三角形,此時(shí)C′的坐標(biāo)為(12,4);
方法二:如答圖3所示,當(dāng)點(diǎn)F′與點(diǎn)A重合時(shí),點(diǎn)F′的坐標(biāo)為(8,0),

根據(jù)△OC′A≌△BAC′,可知△OC′D′為拼成的三角形,此時(shí)C′的坐標(biāo)為(8,4);
方法三:當(dāng)BC′=F′D′時(shí),點(diǎn)F′的坐標(biāo)為(2,0),

根據(jù)△BC′H≌△D′F′H,可知△AF′C′為拼成的三角形,此時(shí)C′的坐標(biāo)為(2,4).
點(diǎn)評(píng):本題考查了坐標(biāo)平面內(nèi)幾何圖形的多種性質(zhì),是一道難度較大的中考?jí)狠S題.涉及到的知識(shí)點(diǎn)包括相似三角形、全等三角形、點(diǎn)的坐標(biāo)、幾何變換(旋轉(zhuǎn)、平移、對(duì)稱)、圖形的剪拼、解方程等,非常全面;分類討論的思想貫穿第(2)②問和第(3)問,第(3)問還考查了幾何圖形的空間想象能力.本題涉及考點(diǎn)眾多,內(nèi)涵豐富,對(duì)考生的數(shù)學(xué)綜合能力要求較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臨沂)如圖,若點(diǎn)M是x軸正半軸上任意一點(diǎn),過點(diǎn)M作PQ∥y軸,分別交函數(shù)y=
k1
x
(x>0)和y=
k2
x
(x>0)的圖象于點(diǎn)P和Q,連接OP和OQ.則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•麗水)如圖1,點(diǎn)A是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn),連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(1)當(dāng)t=2時(shí),求CF的長;
(2)①當(dāng)t為何值時(shí),點(diǎn)C落在線段BD上;
     ②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時(shí),將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點(diǎn)的四邊形沿C′F′剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合上述條件的點(diǎn)C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若點(diǎn)M是x軸正半軸上的任意一點(diǎn),過點(diǎn)M作PQ∥y軸,分別交函數(shù)y=
k1
x
(x>0)和y=
k2
x
(x>0)的圖象于點(diǎn)P和Q,連接OP、OQ,則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若點(diǎn)M是x軸正半軸上的任意一點(diǎn),過點(diǎn)M作PQ∥y軸,分別交函數(shù)y=
k1
x
(x>0)和y=
k2
x
(x>0)的圖象于點(diǎn)P和Q,連接OP、OQ,則下列結(jié)論正確的個(gè)數(shù)有(  )個(gè).
①∠POQ不可能等于90°           
PM
QM
=|
k1
k2
|

③這兩個(gè)函數(shù)的圖象一定關(guān)于x軸對(duì)稱      
④△POQ的面積是
1
2
(|k1|+|k2|).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若點(diǎn)M是x軸正半軸上的任意一點(diǎn),過點(diǎn)M作PQ∥y軸,分別交函數(shù)y=
k1
x
(x>0)和y=
k2
x
(x>0)的圖象于點(diǎn)P和Q,連接OP、OQ.則下列結(jié)論:
(1)∠POQ不可能等于90°;
(2)
PM
QM
=
k1
k2
;
(3)這兩個(gè)函數(shù)的圖象一定關(guān)于x軸對(duì)稱;
(4)△POQ的面積是
1
2
(|k1|+|k2|)

其中正確的有
(4)
(4)
(填寫序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案