如圖,平行四邊形ABCD中,AB=3 cm,BC=5 cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當AE= cm時,四邊形CEDF是矩形;
②當AE= cm時,四邊形CEDF是菱形.
(1)證明:∵ 四邊形ABCD是平行四邊形,
∴ CF∥ED,∴ ∠FCG=∠EDG.
∵ G是CD的中點,∴CG=DG.
在△FCG和△EDG中,
∴ △FCG≌△EDG(ASA),
∴ FG=EG.
∵ CG=DG,∴ 四邊形CEDF是平行四邊形;
(2)①解:當AE=3.5 cm時,平行四邊形CEDF是矩形.
理由是:過A作AM⊥BC于M,
∵∠B=60°,AB=3,
∴BM=1.5 cm.
∵ 四邊形ABCD是平行四邊形,
∴ ∠CDA=∠B=60°,DC=AB=3 cm,BC=AD=5 cm.
∵ AE=3.5 cm,∴ DE=1.5 cm =BM.
在△MBA和△EDC中,
∴ △MBA≌△EDC(SAS),
∴ ∠CED=∠AMB=90°.
∵ 四邊形CEDF是平行四邊形,
∴ 四邊形CEDF是矩形.
②當AE=2 cm時,四邊形CEDF是菱形.
理由是:∵ AD=5 cm,AE=2 cm,∴ DE=3 cm.
∵ CD=3,∠CDE=60°,
∴ △CDE是等邊三角形,∴ CE=DE.
∵ 四邊形CEDF是平行四邊形,
∴ 四邊形CEDF是菱形.
科目:初中數(shù)學 來源: 題型:
如圖,已知在△ABC中,CD是AB邊上的高線,BE平分∠ABC,交CD于點E,BC=5,DE=2,則△BCE的面積等于( )
A.10 B.7 C.5 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(點D不與B、C兩點重合),連接AD,作∠ADE=40°,連接AD,作∠ADE=40°,DE交線段AC于點E.
(1)當∠BDA=115°時,∠BAD=__________;點D從B向C運動時,∠BDA逐漸變__________(填“大”或“小”);
(2)當△ABD≌△DCE時,求CD的長;
(3)在點D的運動過程中,△ADE的形狀也在改變,當∠BDA=110°時,請判斷△ADE的形狀,并證明之.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
閱讀下列解題過程:
已知為△的三邊長,且滿足,試判斷△的形狀.
解:因為, ①
所以. ②
所以. ③
所以△是直角三角形. ④
回答下列問題:
(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?該步的序號為 .
(2)錯誤的原因為 .
(3)請你將正確的解答過程寫下來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com