如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
【小題1】求這條拋物線的解析式;
【小題2】點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
【小題3】探究:若點(diǎn)Q是拋物線對(duì)稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形,若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
【小題1】∵x2-2x-8="0" ,∴(x-4)(x+2)="0" .∴x1=4,x2=-2.
∴A(4,0) ,B(-2,0)
又∵拋物線經(jīng)過點(diǎn)A、B、C,設(shè)拋物線解析式為y=ax2+bx+c (a≠0),
∴ ∴
∴所求拋物線的解析式為y=-x2+x+4
【小題2】設(shè)P點(diǎn)坐標(biāo)為(m,0),過點(diǎn)E作EG⊥x軸于點(diǎn)G.
∵點(diǎn)B坐標(biāo)為(-2,0),點(diǎn)A坐標(biāo)(4,0),
∴AB=6, BP=m+2.
∵PE∥AC,
∴△BPE∽△BAC.
∴.
∴.∴EG=
∴S△CPE= S△CBP- S△EBP=BP•CO-BP•EG
∴(m+2)(4-).=-m 2+m+[來源:學(xué)|科|網(wǎng)]
∴ (m-1) 2+3
又∵-2≤m≤4,
∴當(dāng)m=1時(shí),S△CPE有最大值3.
此時(shí)P點(diǎn)的坐標(biāo)為(1,0).
【小題3】存在Q點(diǎn),其坐標(biāo)為Q1(1,1),Q2 (1,),Q3. (1,-),
Q4. (1,4+),Q5. (1,4-). 5分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
10 |
10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com