已知:如圖,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AD上一點,求證:∠DEC>∠ABC.

證明:∵∠BAC=90°,
∴∠B+∠ACB=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠DAC+∠ACD=90°,
∴∠B=∠DAC,
∵∠DEC>∠DAC,
∴∠DEC>∠ABC.
分析:首先根據(jù)三角形的內(nèi)角和定理可得∠B+∠ACB=90°,∠DAC+∠ACD=90°,根據(jù)同角的余角相等可得∠B=∠DAC,再根據(jù)三角形的內(nèi)角與外角的關(guān)系可得∠DEC>∠DAC,進而得到∠DEC>∠ABC.
點評:此題主要考查了三角形內(nèi)角和定理,以及三角形的內(nèi)角與外角的關(guān)系,關(guān)鍵是掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案