某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=80時,y=40;x=70時,y=50.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
【答案】分析:(1)根據(jù)題意得:銷售單價x≥成本60元,獲利不得高于40%時,銷售單價=60(1+40%),獲利不得高于40%,則銷售單價x≤60(1+40%);再利用待定系數(shù)法把x=80時,y=40;x=70時,y=50.代入一次函數(shù)y=kx+b中,求出k,b即可得到關(guān)系式;
(2)根據(jù)題目意思,表示出銷售額和成本,然后表示出利潤=銷售額-成本,整理后根據(jù)x的取值范圍求出最大利潤.
解答:解:(1)60≤x≤60(1+40%),
∴60≤x≤84,
由題得:解之得:k=-1,b=120,
∴一次函數(shù)的解析式為y=-x+120(60≤x≤84).

(2)銷售額:xy=x(-x+120)元;成本:60y=60(-x+120).
∴W=xy-60y,
=x(-x+120)-60(-x+120),
=(x-60)(-x+120),
=-x2+180x-7200,
=-(x-90)2+900,
∴W=-(x-90)2+900,(60≤x≤84),
當(dāng)x=84時,W取得最大值,最大值是:-(84-90)2+900=864(元).
即銷售價定為每件84元時,可獲得最大利潤,最大利潤是864元.
點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)在實際問題中的應(yīng)用,做題時一定要弄清題意,理清關(guān)系,綜合性較強,體現(xiàn)了數(shù)學(xué)與實際生活的密切聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商場試銷一種成本為50元/件的T恤,規(guī)定試銷期間單價不低于成本單價,又獲利不得高于50%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元/件)符合一次函數(shù)關(guān)系,試銷數(shù)據(jù)如下表:
售價(元/件)  55 60 70
 銷量(件) 75 70 60
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為ω元,試寫出利潤ω與銷售單價x之間的關(guān)系式;銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•如東縣一模)某商場試銷一種成本為每件60元的服裝,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;
(3)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄂爾多斯)某商場試銷一種成本為每件60元的T恤,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)之間的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若商場銷售這種T恤獲得利潤為W(元),求出利潤W(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;并求出當(dāng)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?
(3)若獲得利潤不低于1200元,試確定銷售單價x的范圍.

查看答案和解析>>

同步練習(xí)冊答案