如圖,△OAB是邊長為4+2的等邊三角形,其中O是坐標原點,頂點B在y軸的正半軸上.將△OAB折疊,使點A與OB邊上的點P重合,折痕與OA、AB的交點分別是E、F.如果PE∥x軸,
(1)求點P、E的坐標;
(2)如果拋物線y=-x2+bx+c經(jīng)過點P、E,求拋物線的解析式.

【答案】分析:(1)求E點的坐標就要求出OP,PE的值,在直角三角形OPE中,∠POE=60°,因此OE=2OP,PE=OP,而OA=OE+AE=2OP+OP,據(jù)此可求出OP,OE,PE的長.由此求出P和E點的坐標.
(2)將P、E的坐標代入拋物線中即可求出二次函數(shù)的解析式.
解答:解:(1)設OP=x,則OE=2x,PE=x.
根據(jù)折疊的性質可得AE=PE=x,
則有OA=OE+AE=OE+PE=2x+x=4+2,
∴x=2,
∴OP=2,PE=2,
因此P(0,2),E(2,2);

(2)將P、E坐標代入拋物線可得:

解得:,
∴拋物線的解析式為y=-x2+x+2.
點評:本題著重考查了等邊三角形的性質、圖形旋轉變換、待定系數(shù)法求二次函數(shù)解析式等重要知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△OAB是邊長為2的等邊三角形,過點A的直線y=-
3
x
+m與x軸交于點E.
(1)求點E的坐標;
(2)求過A、O、E三點的拋物線解析式;
(3)若點P是(2)中求出的拋物線AE段上一動點(不與A、E重合),設四邊形OAPE的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OAB是邊長為4+2
3
的等邊三角形,其中O是坐標原點,頂點B在y軸的正半軸上.將△精英家教網(wǎng)OAB折疊,使點A與OB邊上的點P重合,折痕與OA、AB的交點分別是E、F.如果PE∥x軸,
(1)求點P、E的坐標;
(2)如果拋物線y=-
1
2
x2+bx+c經(jīng)過點P、E,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-
1
6
x2+bx+c經(jīng)過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?精英家教網(wǎng)若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標原點,頂點B在y軸的正方向上,將△OAB折疊,使點A落在OB邊上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A'的坐標和直線A′F所對應的函數(shù)關系式;
(2)在OB上是否存在點A′,使四邊形AFA′E是菱形?若存在,請求出此時點A′的坐標;若不存在,請說明理由;
(3)當點A′在OB上運動但不與點O、B重合,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB 折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-
1
6
x2+bx+c
經(jīng)過點A′和E時,求拋物線與x軸的交點的坐標.

查看答案和解析>>

同步練習冊答案