【題目】如圖,將放在每個小正方形的邊長為的網(wǎng)格中,點、、均落在格點上.
(1)的面積等于________;
若四邊形是中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)________.
【答案】6 見解析.
【解析】
(1)△ABC以AB為底,高為3個單位,求出面積即可;
(2)作出所求的正方形,如圖所示,畫圖方法為:取格點P,連接PC,過點A畫PC的平行線,與BC交于點Q,連接PQ與AC相交得點D,過點D畫CB的平行線,與AB相交得點E,分別過點D、E畫PC的平行線,與CB相交得點G,F(xiàn),則四邊形DEFG即為所求.
(1)△ABC的面積為:×4×3=6;
(2)如圖,取格點P,連接PC,過點A畫PC的平行線,與BC交于點Q,連接PQ與AC相交得點D,過點D畫CB的平行線,
與AB相交得點E,分別過點D、E畫PC的平行線,與CB相交得點G,F(xiàn),
則四邊形DEFG即為所求.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,O(0,0),A(0,-6),B(8,0)三點在⊙P上.
(1)求⊙P的半徑及圓心P的坐標;
(2)M為劣弧OB的中點,求證:AM是∠OAB的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線l與y軸交于點D.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且△BCG與△BCD面積相等,求點G的坐標;
(3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店11月份購進甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.12月份,這兩種水果的進價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店12月份購進這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進甲、乙兩種水果分別是多少千克?
(2)若12月份將這兩種水果進貨總量減少到120千克,設(shè)購進甲種水果a千克,需要支付的貨款為w元,求w與a的函數(shù)關(guān)系式;
(3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若一個三角形中,其中有一個內(nèi)角是另外一個內(nèi)角的一半,則這樣的三角形叫做“半角三角形”. 例如:等腰直角三角形就是“半角三角形”.在鈍角三角形中,,,,過點的直線交邊于點.點在直線上,且.
(1)若,點在延長線上.
① 當,點恰好為中點時,依據(jù)題意補全圖1.請寫出圖中的一個“半角三角形”:_______;
② 如圖2,若,圖中是否存在“半角三角形”(△除外),若存在,請寫出圖中的“半角三角形”,并證明;若不存在,請說明理由;
(2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請直接寫出,, 滿足的數(shù)量關(guān)系:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點是上一點且,過點畫線段,使點在的邊上且點,與的一個頂點組成的小三角形與相似,則滿足條件的線段的長度分別為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),若點P與△ABC三個頂點中的任意兩個頂點連接形成的三角形都是等腰三角形,則稱點P是△ABC的巧妙點.
(1)如圖1,求作△ABC的巧妙點P(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)如圖2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙點P (尺規(guī)作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數(shù)是 .
(3)等邊三角形的巧妙點的個數(shù)有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB⊥BC,DC⊥BC,B、C分別是垂足,DE交AC于M,BC=CD,AB=EC,DE與AC有什么關(guān)系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com