【題目】閱讀理解:
如圖,在平面直角坐標系xOy中,點A與點B的坐標分別是,.
對于坐標平面內的一點P,給出如下定義:如果,則稱點P為線段AB的“等角點”顯然,線段AB的“等角點”有無數個,且A、B、P三點共圓.
設A、B、P三點所在圓的圓心為C,直接寫出點C的坐標和的半徑;
軸正半軸上是否有線段AB的“等角點”?如果有,求出“等角點”的坐標;如果沒有,請說明理由;
當點P在y軸正半軸上運動時,是否有最大值?如果有,說明此時最大的理由,并求出點P的坐標;如果沒有請說明理由.
【答案】(1)①或,半徑為,②,.(2)
【解析】分析:
(1)①如下圖1,連接BC、AC,則由“圓周角定理”可知∠ACB=2∠APB=90°,過點C作CH⊥AB于點H,則由已知條件根據“垂徑定理”可得AH=BH=CH=3,從而可得OH=OA+AH=4,由此即可得到點C的坐標為(-4,3)或(-4,-3);此時在Rt△ACH中由勾股定理可求得的半徑為 ;②如下圖2,當點C的坐標為(-4,3)時,過點C作CD⊥y軸于點D,則由CD=4<可知,此時C和y軸有交點,設交點為P1和P2,連接CP1和CP2,利用勾股定理求得DP1和DP2的長度即可求得P1和P2的坐標了;
(2)如下圖3,當過A,B的圓與y軸相切于點P時,∠最大,設此時圓心為E,則E在第三象限,在y軸的正半軸上任意取一點不與點P重合,連接MA,MB,PA,PB,設MB交E于點N,連接NA,則由“圓周角定理”和“三角形外角的性質”易得∠APB=∠ANB>∠AMB,從而說明此時∠APB最大;再過點E作EF⊥x軸于點F,連接EA、EP,易證四邊形OPEF是矩形,由此可得PE=OF=4,再Rt△AEF中,由勾股定理可得EF=,從而可得OP=,由此即可得到此時點P的坐標為.
詳解:
(1)①如圖1,
在x軸的上方,作以AB為斜邊的直角三角形ACB,易知點A,B,P在上,連接
∵,
∴,
∴,,
∴,
由垂徑定理可得,,
∴,,
所以,半徑為,
由對稱性可知,點也滿足條件.
②軸的正半軸上存在線段AB的“等角點”.
如圖2所示,
當圓心為時,過點C作軸于點D,則,,
∵的半徑為,
∴與y軸相交,
設交點為,,連接,,CA,則,
∵軸,,,
∴,
∴,.
當過A,B的圓與y軸相切于點P時,最大.
理由如下:如果點P在y軸的正半軸上,如圖3,
設此時圓心為E,則E在第三象限,在y軸的正半軸上任意取一點不與點P重合,
連接MA,MB,PA,PB,設MB交于點N,連接NA,
∵點P、點N在上,
∴,
∵是的外角,
∴,即,
此時,過點E作軸于點F,連接EA,EP,則,,
∵與y軸相切于點P,則軸,
∴四邊形OPEF是矩形,,,
∴的半徑為4,即,
∴在中,,
∴,
∴
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com