如圖,PA是⊙O的切線,切點(diǎn)為A,割線PCB交⊙O于C、B兩點(diǎn),半徑OD⊥BC,垂足為E,AD交PB于點(diǎn)F.
(1)PA與PF是否相等?______(填“是”或“否”);
(2)若F是PB的中點(diǎn),CF=1.5,則切線PA的長(zhǎng)為_(kāi)_____.

【答案】分析:(1)證PA、PF是否相等,可證∠PFA和∠PAF是否相等;由于PA是⊙O的切線,可得∠OAP=90°;
易知:∠D=∠OAD;那么∠DFE和∠FAP是等角的余角,因此兩角相等,可得出∠PFA=∠PAF,即PF=PA.
(2)若F是PB中點(diǎn),可得出的條件是PA=PF=BF;可用PA表示出PC、PB的長(zhǎng),然后根據(jù)切割線定理求出PA的長(zhǎng).
解答:解:(1)是.
證明:∵PA是⊙O的切線,A為切點(diǎn).
∴∠OAP=90°,
∴∠FAP+∠OAD=90°;
∵OD⊥BC,
∴∠DFE+∠D=90°;
又∵OA=OD,
∴∠D=∠OAD;
∴∠DFE=∠FAP=∠PFA;
∴PA=PF.

(2)∵PA是⊙O的切線,PCB是⊙O的割線,
∴PA2=PC•PB;
∵F為PB的中點(diǎn),
∴PB=2PF=2PA.
∴PA2=(PA-CF)•2PA=(PA-1.5)•2PA;
∴PA2-3PA=0;
∴PA=3.
點(diǎn)評(píng):此題考查了切線的性質(zhì)、切割線定理及等腰三角形的性質(zhì)等知識(shí)點(diǎn),做題時(shí)需靈活綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA是⊙O的割線,且經(jīng)過(guò)圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆山東省臨沂市莒南縣九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過(guò)圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB="2BC"

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省臨沂市莒南縣九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過(guò)圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB=2BC

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過(guò)圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;    
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年4月中考數(shù)學(xué)模擬試卷(58)(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過(guò)圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案