如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O(shè)為圓心的圓過點(diǎn)C,且與OA交于點(diǎn)E,與OB交于點(diǎn)F,連接CE,CF.
(1)求證:AB與⊙O相切.
(2)若∠AOB=∠ECF,試判斷四邊形OECF的形狀,并說明理由.

(1)證明:連接OC,
∵在△ABO中,OA=OB,C是邊AB的中點(diǎn),
∴OC⊥AB,
∵OC為半徑,
∴AB與⊙O相切;

(2)解:四邊形OECF的形狀是菱形,
理由是:
如圖,取圓周角∠M,
則∠M+∠ECF=180°,
由圓周角定理得:∠EOF=2∠M,
∵∠ECF=∠EOF,
∴∠ECF=2∠M,
∴3∠M=180°,
∠M=60°,
∴∠EOF=∠ECF=120°,
∵OA=OB,
∴∠A=∠B=30°,
∴∠EOC=90°-30°=60°,
∵OE=OC,
∴△OEC是等邊三角形,
∴EC=OE,
同理OF=FC,
即OE=EC=FC=OF,
∴四邊形OECF是菱形.
分析:(1)連接OC,根據(jù)三線合一得出OC⊥AB,根據(jù)切線判定推出即可;
(2)取圓周角∠M,根據(jù)圓周角定理和圓內(nèi)接四邊形性質(zhì)得出∠M+∠ECF=180°,∠EOF=2∠M,推出∠ECF=2∠M,求出∠M,求出∠EOF,得出等邊三角形OEC,推出OE=EC,同理得出OF=FC,推出OE=OF=FC=EC,根據(jù)菱形判定推出即可.
點(diǎn)評:本題考查了切線的判定,等腰三角形的性質(zhì),菱形判定,等邊三角形的性質(zhì)和判定,圓周角定理,圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABO中,已知點(diǎn)A(
3
,3)
、B(-1,-1)、O(0,0),正比例函數(shù)y=-x圖象精英家教網(wǎng)是直線l,直線AC∥x軸交直線l與點(diǎn)C.
(1)C點(diǎn)的坐標(biāo)為
 

(2)以點(diǎn)O為旋轉(zhuǎn)中心,將△ABO順時針旋轉(zhuǎn)角α(90°≤α<180°),使得點(diǎn)B落在直線l上的對應(yīng)點(diǎn)為B′,點(diǎn)A的對應(yīng)點(diǎn)為A′,得到△A′OB′.
①∠α=
 
;②畫出△A′OB′.
(3)寫出所有滿足△DOC∽△AOB的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABO中,已知A(0,4),B(-2,0),D為線段AB的中點(diǎn).
(1)求點(diǎn)D的坐標(biāo);
(2)求經(jīng)過點(diǎn)D的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•崇左)如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O(shè)為圓心的圓過點(diǎn)C,且與OA交于點(diǎn)E,與OB交于點(diǎn)F,連接CE,CF.
(1)求證:AB與⊙O相切.
(2)若∠AOB=∠ECF,試判斷四邊形OECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶模擬)如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O(shè)為圓心的圓過點(diǎn)C,且與OA交于點(diǎn)E、與OB交于點(diǎn)F,連接CE、CF.
(1)AB與⊙O相切嗎,為什么?
(2)若∠AOB=∠ECF,試判斷四邊形OECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABO中,AD⊥OB于D,BC⊥OA于C,AD,BC交于點(diǎn)E,且OE平∠AOB,求證:△AEB是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案