如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延
長EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:
①△ABG≌△AFG;②BG=GC;③AG∥CF;      ④S△FGC=3.
其中正確結(jié)論的個(gè)數(shù)是
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
C
對(duì)折可得:DE="EF" ,AF="AD" ,AF⊥EF , △ADE≌△AFE
①在Rt△ABG與Rt△AFG中,AB="AF" ,AG=AG,所以,Rt△ABG≌Rt△AFG①正確。②Rt△ABG≌Rt△AFG可得:BG="FG" ,∠AGB=∠AGF設(shè)BG="x" 則,CG="BC-BG" = 6-xGE=GF+EF=BG+DE=x+2在Rt△ECG中,有CG^2+CE^2="EG^2CG=6-x" , CE="4" ,EG=x+2可得:(6-x)^2 + 4^2 = (x+2)^2解得:x=3所以,BG=GF=CG=3  結(jié)論②正確。③因?yàn),CG=GF所以,∠CFG = ∠FCG因?yàn)椋螧GF=∠CFG+∠FCG(三角形的外角等于不相鄰的兩個(gè)內(nèi)角和)又∠BGF=∠AGB+∠AGF可得:∠CFG+∠FCG = ∠AGB+∠AGF因?yàn),∠AGB=∠AGF,∠CFG = ∠FCG所以,2∠AGB=2∠FCG即,∠AGB=∠FCG所以,AG//CF結(jié)論③正確。
④∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;∴BG="FG∵EF=DE=" CD=2,設(shè)BG=FG=x,則CG=6-x.
在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC過F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴FH/GC="EF/EG" ,EF=DE=2,GF=3,∴EG=5,∴FH/GC="EF/EG=2/5" ,∴S△FCG="S△GCE-S△FEC=" 1/2×3×4-1/2 ×4×(2/5 ×3)=18/5結(jié)論④錯(cuò)誤。故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知E是平行四邊形ABCD的邊AB上的點(diǎn),連接DE.
(1)在∠ABC的內(nèi)部,作射線BM交線段CD于點(diǎn)F,使∠CBF=∠ADE;(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)在(1)的條件下,求證:△ADE≌△CBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱為第二次操作;……依次類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形,如圖1,平行四邊形中,若,則平行四邊形為1階準(zhǔn)菱形。

(1)判斷與推理:
① 鄰邊長分別為2和3的平行四邊形是__________階準(zhǔn)菱形;
② 小明為了剪去一個(gè)菱形,進(jìn)行如下操作:如圖2,把平行四邊形沿著折疊(點(diǎn)上)使點(diǎn)落在邊上的點(diǎn),得到四邊形,請(qǐng)證明四邊形是菱形。
(2)操作、探究與計(jì)算:
① 已知平行四邊形的鄰邊分別為1,裁剪線的示意圖,并在圖形下方寫出的值;
② 已知平行四邊形的鄰邊長分別為,滿足,請(qǐng)寫出平行四邊形是幾階準(zhǔn)菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,G是對(duì)角線AC上一點(diǎn),GE⊥AB,GF⊥BC,垂足分別是E、F,連結(jié)EF、BG、DG。求證:DG=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法中錯(cuò)誤的是
A.矩形的對(duì)角線互相平分且相等B.對(duì)角線互相垂直的四邊形是菱形
C.等腰梯形的兩條對(duì)角線相等D.等腰三角形底邊的中點(diǎn)到兩腰的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC是邊長為2的等邊三角形,將△ABC沿射線BC向右平移得到△DCE,連接AD、BD,下列結(jié)論錯(cuò)誤的是(    )
A.AD∥BC                    B.AC⊥BD
C.四邊形ABCD面積為      D.四邊形ABED是等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBC交DC于點(diǎn)E, 延長BC到點(diǎn)F,使FC
=EC,連結(jié)DF交BE的延長線于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中正確結(jié)論
的個(gè)數(shù)為(    ) 
①OH=BF; ②∠CHF=45°; ③GH=BC;④DH2=HE·HB
A. 1個(gè)        B. 2個(gè)        C. 3個(gè)         D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知點(diǎn)A(0,2)、B(,2)、C(0,4),過點(diǎn)C向右作平行于x軸的射線,點(diǎn)P是射線上的動(dòng)點(diǎn),連接AP,以AP為邊在其左側(cè)作等邊△APQ,連接PB、BA.若四邊形ABPQ為梯形,則:

(1)當(dāng)AB為梯形的底時(shí),點(diǎn)P的橫坐標(biāo)是   ▲  ;
(2)當(dāng)AB為梯形的腰時(shí),點(diǎn)P的橫坐標(biāo)是   ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在ABCD中,BE平分∠ABC并與AD,CD的延長線交于點(diǎn)E,F(xiàn),AB=3,BC=5,則DF=   ▲        .

查看答案和解析>>

同步練習(xí)冊(cè)答案