【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.

(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;

(2)若點(diǎn)P在線段AB上.如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)ACE是直角三角形,理由見(jiàn)解析.

【解析】分析:(1)根據(jù)四邊形ABCD和四邊形BPEF是正方形,證明APE≌△CFE;(2)分別判斷△ABC,△APE是等腰直角三角形得∠CAE=90°.

詳解:(1)∵四邊形ABCD和四邊形BPEF是正方形,

ABBC,BPBF,∴APCF,

在△APE和△CFE中,

APCF,∠P=∠F,PEEF

∴△APE≌△CFE,

EAEC;

(2)∵PAB的中點(diǎn),

PAPB,又PBPE

PAPE,

∴∠PAE=45°,又∠DAC=45°,

∴∠CAE=90°,即△ACE是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在已知線段AB的同側(cè)構(gòu)造∠FAB=∠GBA,并且在射線AF,BG上分別取點(diǎn)D和E,在線段AB上取點(diǎn)C,連結(jié)DC和EC.

Ⅰ、如圖,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60或∠FAB=∠GBA=90兩種情況中任選一種,解決以下問(wèn)題:
①線段AB的長(zhǎng)度是否發(fā)生變化,直接寫出長(zhǎng)度或變化范圍;
②∠DCE的度數(shù)是否發(fā)生變化,直接寫出度數(shù)或變化范圍.
Ⅱ、若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE這兩個(gè)三角形全等,請(qǐng)求出:
①線段AB的長(zhǎng)度或取值范圍,并說(shuō)明理由;
②∠DCE的度數(shù)或取值范圍,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點(diǎn) , 旋轉(zhuǎn)角度是度;
(2)若連結(jié)EF,則△AEF是三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是ts.過(guò)點(diǎn)DDF⊥BC于點(diǎn)F,連接DE、EF

1)用t的代數(shù)式表示:AE=   DF=   ;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說(shuō)明理由;

3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,G是BC上任意一點(diǎn)(點(diǎn)G與B、C不重合),AE⊥DG于E,CF∥AE交DG于F.請(qǐng)你經(jīng)過(guò)觀察、猜測(cè)線段FC、AE、EF之間是否存在一定的數(shù)量關(guān)系?若存在,證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為直角△ABC的斜邊AB上一點(diǎn),DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好與B重合,聯(lián)結(jié)CD交BE于F,如果AC═8,tanA═ ,那么CF:DF═

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l:y=﹣ x+6交y軸于點(diǎn)A,與x軸交于點(diǎn)B,過(guò)A、B兩點(diǎn)的拋物線m與x軸的另一個(gè)交點(diǎn)為C,(C在B的左邊),如果BC=5,求拋物線m的解析式,并根據(jù)函數(shù)圖像指出當(dāng)m的函數(shù)值大于0的函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩種正方形瓷磚鋪設(shè)正方形地面,觀察圖形并猜想填空:當(dāng)黑色瓷磚為28塊時(shí),白色瓷磚塊數(shù)為( 。

A. 27 B. 28 C. 33 D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)-14-×[2-(-3)]; (2)(-3)-1×-6÷|-|;

(3)2×[5+]-(-|-4|÷);(4)--[-3+(-3)÷(-)].

查看答案和解析>>

同步練習(xí)冊(cè)答案