如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B和D.
(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同
時(shí)點(diǎn)Q由點(diǎn)B出發(fā)沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng). 設(shè)S=PQ2(cm2)
①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形? 如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).
解: (1)據(jù)題意知: A(0, -2), B(2, -2) ,D(4,—),
則 解得
∴拋物線的解析式為:
(2) ①由圖象知: PB=2-2t, BQ= t, ∴S=PQ2=PB2+BQ2=(2-2t)2 + t2 ,
即 S=5t2-8t+4 (0≤t≤1)
②假設(shè)存在點(diǎn)R, 可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形.
∵S=5t2-8t+4 (0≤t≤1), ∴當(dāng)S=時(shí), 5t2-8t+4=,得 20t2-32t+11=0,
解得 t = ,t = (不合題意,舍去)
此時(shí)點(diǎn) P的坐標(biāo)為(1,-2),Q點(diǎn)的坐標(biāo)為(2,—)
若R點(diǎn)存在,分情況討論:
【A】假設(shè)R在BQ的右邊, 這時(shí)QRPB, 則,R的橫坐標(biāo)為3, R的縱坐標(biāo)為—
即R (3, -),代入, 左右兩邊相等,∴這時(shí)存在R(3, -)滿足題意.
【B】假設(shè)R在BQ的左邊, 這時(shí)PRQB, 則:R的橫坐標(biāo)為1, 縱坐標(biāo)為-即(1, -) 代入, 左右兩邊不相等, R不在拋物線上.
【C】假設(shè)R在PB的下方, 這時(shí)PRQB, 則:R(1,—)代入,
左右不相等, ∴R不在拋物線上. 綜上所述, 存點(diǎn)一點(diǎn)R(3, -)滿足題意.
(3)∵A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過(guò)B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,M的坐標(biāo)為(1,—)-
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
9 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com