如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)題意AC垂直于x軸,由A的坐標(biāo)得到C(1,0),設(shè)出點(diǎn)D坐標(biāo)和反比例函數(shù)解析式,結(jié)合點(diǎn)A(1,4)在函數(shù)圖象上,得到反比例函數(shù)解析式,從而得到ab=4,再根據(jù)△ABD的面積為4,根據(jù)底為BD,高為AM,利用三角形的面積公式表示出三角形ABD的面積,由此三角形面積為4列出關(guān)系式,將ab=4代入可得出a的值,進(jìn)而確定出b的值,即可得到點(diǎn)B的坐標(biāo);
(2)根據(jù)經(jīng)過(guò)兩點(diǎn)直線斜率的公式,結(jié)合C、D的坐標(biāo),得到直線DC的斜率為-b,同理根據(jù)A、B兩點(diǎn)的坐標(biāo),得到直線AB的斜率關(guān)于a、b的式子,再根據(jù)反比例解析式,有ab=4,代入化簡(jiǎn)可得kAB==-b,直線AB與直線DC的斜率相等,根據(jù)斜率相等的兩直線平行可得出DC∥AB;
(3)根據(jù)條件可知四邊形ABCD的對(duì)角線互相垂直,只要四邊形ABCD是平行四邊形,它就是一個(gè)菱形,再由(2)知DC∥AB,所以只需DC=AB即可,接下來(lái)利用兩點(diǎn)的距離公式,根據(jù)CD=AB列出關(guān)于a、b的等式,結(jié)合ab=4,求出a與b的值,確定出B點(diǎn)坐標(biāo)為(2,2),此時(shí)四邊形ABCD為菱形,最后用經(jīng)過(guò)兩點(diǎn)的直線斜率的公式,得出此時(shí)直線AB的斜率,再由B的坐標(biāo),即可求出直線AB方程.
解答:(1)解:根據(jù)題意A(1,4),得C(1,0),
又∵B(a,b),故設(shè)點(diǎn)D(0,b),
∵A(1,4)在反比例函數(shù)y=的圖象上,
∴將x=1,y=4代入反比例函數(shù)解析式得:4=,即m=4,
∵根據(jù)點(diǎn)B(a,b)在反比例函數(shù)圖象上,
∴將x=a,y=b代入反比例函數(shù)解析式得:ab=4,
∴S△ABD=BD•AM=×a×(4-b)=4,即4a-ab=4a-4=8,
∴a=3,b=,
則點(diǎn)B的坐標(biāo)為(3, );

(2)證明:由C(1,0),設(shè)D(0,b),
則直線DC的斜率為kDC==-b.
同理,根據(jù)A(1,4),(a,b),可得直線AB的斜率為kAB=
∵點(diǎn)B在反比例函數(shù)圖象上,有ab=4,
∴kAB===-b=kDC
則DC∥AB;

(3)四邊形ABCD能為菱形,而四邊形ABCD的對(duì)角線互相垂直,
故當(dāng)ABCD是平行四邊形時(shí),四邊形ABCD就是菱形,
由(2)得DC∥AB,要使ABCD是平行四邊形,
只需DC=AB,即=
兩邊平方得:1-2a+a2+16-8b+b2=1+b2,即a2-2a-8b+16=0①,
又∵ab=4,即b=②,
將②代入①得:(a-2)(a2+16)=0,
解得:a=2,
將a=2代入②得:b=2,
∴B(2,2),
則點(diǎn)為B(2,2)時(shí),四邊形ABCD為菱形時(shí),
此時(shí)直線AB的斜率為kAB==-2,
由直線的點(diǎn)斜式方程,得AB方程為y-2=-2(x-2),即y=-2x+6,
則所求函數(shù)解析式為y=-2x+6.
點(diǎn)評(píng):本題主要考查了直線的斜率和直線的方程,兩點(diǎn)的距離公式,坐標(biāo)系內(nèi)三角形面積求法,以及菱形的判定,從圖上獲取有用的信息是解題的關(guān)鍵所在.已知點(diǎn)在圖象上,那么點(diǎn)一定滿足這個(gè)函數(shù)解析式,反過(guò)來(lái)如果這點(diǎn)滿足函數(shù)的解析式,那么這個(gè)點(diǎn)也一定在函數(shù)圖象上,在分析問(wèn)題時(shí),注意將數(shù)形結(jié)合在一起.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,精英家教網(wǎng)sin∠BOA=
35

求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)y=
mx
(x>0,m是常數(shù))
的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

1.若△ABD的面積為4,求點(diǎn)B的坐標(biāo)

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

【小題1】若△ABD的面積為4,求點(diǎn)B的坐標(biāo)
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案