關(guān)于y的方程4y+5=0與4y+3k=1的解完全相同,則k的值為( 。
分析:求出第一個(gè)方程的解,再把方程的解代入第二個(gè)方程,求出方程的解即可.
解答:解:4y+5=0,
解得:y=-
5
4
,
把y=-
5
4
代入方程4y+3k=1得:4×(-
5
4
)+3k=1,
解得:k=2,
故選C.
點(diǎn)評(píng):本題考查了同解方程,解一元一次方程的應(yīng)用,關(guān)鍵是得出關(guān)于k的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于y的方程ky2-4y-3=3y+4有實(shí)根,則k的取值范圍是
k≥-
49
28
k≥-
49
28

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

【閱讀理解】問(wèn)題:已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+2×
y
2
-3=0.
化簡(jiǎn)得y2+4y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
【解決問(wèn)題】請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為
y2-2y-3=0
y2-2y-3=0

(2)已知關(guān)于x的方程x2+nx+m=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

先閱讀下列材料,然后解答問(wèn)題
若關(guān)于x的方程:mx-3=3x+5解是正整數(shù),求m的整數(shù)值.
解:由方程:mx-3=3x+5得:
mx+3x=5+3
即:(m+3)x=8
∵x是正整數(shù),m是整數(shù)
∴m+3是8的正整數(shù)約數(shù)
∴m+3=1或m+3=2或m+3=4或m+3=8
∴m=-2或m=-1或m=1或m=5

試仿照上面的解法,回答下面的問(wèn)題:
若關(guān)于y的方程:ny+y+5=-4y+12解是正整數(shù),求n的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

【閱讀理解】問(wèn)題:已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
設(shè)所求方程的根為y,則y=2x,所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+2×
y
2
-3=0.
化簡(jiǎn)得y2+4y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
【解決問(wèn)題】請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為_(kāi)_____;
(2)已知關(guān)于x的方程x2+nx+m=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案