分析 作點C關于AB的對稱點C′,連接C′D與AB相交于點M,根據(jù)軸對稱確定最短路線問題,點M為CM+DM的最小值時的位置,根據(jù)垂徑定理可得$\widehat{AC}$=$\widehat{AC′}$,然后求出C′D為直徑,從而得解.
解答 解:如圖,作點C關于AB的對稱點C′,連接C′D與AB相交于點M,
此時,點M為CM+DM的最小值時的位置,
由垂徑定理,$\widehat{AC}$=$\widehat{AC′}$,
∴$\widehat{BD}$=$\widehat{AC′}$,
∵$\widehat{AC}$=$\widehat{CD}$=$\widehat{BD}$,AB為直徑,
∴C′D為直徑.則CD′=AB=8(cm).
故答案是:8.
點評 本題考查了軸對稱確定最短路線問題,垂徑定理,熟記定理并作出圖形,判斷出CM+DM的最小值等于圓的直徑的長度是解題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | (x+10%)元 | B. | x(1+10%)元 | C. | $\frac{x}{1-10%}$元 | D. | $\frac{x}{1+10%}$元 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com